Abstract

We have demonstrated a monolithic MgO:LiNbO3 doubly resonant optical parametric oscillator (OPO) using an all-solid-state pump. The pump laser was a single-axial-mode monolithic Nd:YAG nonplanar ring oscillator whose diode-laser pump was modulated at 325 kHz to produce relaxation oscillation spikes to higher peak powers at 1.06 μm that were frequency doubled in a resonant cavity to 532 nm. Pump depletions for the OPO of greater than 60% were observed when pumping six times above the calculated 40-mW threshold. The OPO output was temperature tuned from 1.01 to 1.13 μm, producing single-axial-mode output over much of the range. By changing the voltage applied across the OPO, the output wavelength was scanned as much as 11 nm in 310 V.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).
  2. J. A. Giordmaine, R. C. Miller, in Physics of Quantum Electronics, P. L. Kelly, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1966),pp. 31–42.
  3. J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).
  4. T. F. Ewanizky, IEEE J. Quantum Electron. QE-14, 962 (1978).
  5. T. J. Kane, R. L. Byer, Opt. Lett. 10, 65 (1985).
  6. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. QE-24, 913 (1988).
  7. A. E. Siegman, Appl. Opt. 1, 739 (1962).
  8. D. A. Bryan, R. Gerson, H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).
  9. J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 62, 20 (1986).
  10. R. L. Byer, in Treatise in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1973), pp. 587–702.
  11. H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966).
  12. T. J. Kane, A. C. Nilsson, R. L. Byer, Opt. Lett. 12, 175 (1987).
  13. A. C. Nilsson, T. J. Kane, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 912, 13 (1988).
  14. G. E. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
  15. W. J. Kozlovsky, E. K. Gustafson, R. C. Eckardt, R. L. Byer, Opt. Lett. 13, 1102 (1988).
  16. L.-A. Wu, M. Xiao, H. J. Kimble, J. Opt. Soc. Am. B 4, 1465 (1987).

1988 (3)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. QE-24, 913 (1988).

A. C. Nilsson, T. J. Kane, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 912, 13 (1988).

W. J. Kozlovsky, E. K. Gustafson, R. C. Eckardt, R. L. Byer, Opt. Lett. 13, 1102 (1988).

1987 (2)

1986 (1)

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 62, 20 (1986).

1985 (1)

1984 (2)

G. E. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).

D. A. Bryan, R. Gerson, H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).

1978 (1)

T. F. Ewanizky, IEEE J. Quantum Electron. QE-14, 962 (1978).

1973 (1)

R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).

1971 (1)

J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).

1966 (1)

1962 (1)

Bjorkholm, J. E.

J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).

Bryan, D. A.

D. A. Bryan, R. Gerson, H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).

Byer, R. L.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. QE-24, 913 (1988).

A. C. Nilsson, T. J. Kane, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 912, 13 (1988).

W. J. Kozlovsky, E. K. Gustafson, R. C. Eckardt, R. L. Byer, Opt. Lett. 13, 1102 (1988).

T. J. Kane, A. C. Nilsson, R. L. Byer, Opt. Lett. 12, 175 (1987).

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 62, 20 (1986).

T. J. Kane, R. L. Byer, Opt. Lett. 10, 65 (1985).

R. L. Byer, in Treatise in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1973), pp. 587–702.

Eckardt, R. C.

Edwards, G. E.

G. E. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).

Ewanizky, T. F.

T. F. Ewanizky, IEEE J. Quantum Electron. QE-14, 962 (1978).

Gerson, R.

D. A. Bryan, R. Gerson, H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).

Giordmaine, J. A.

J. A. Giordmaine, R. C. Miller, in Physics of Quantum Electronics, P. L. Kelly, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1966),pp. 31–42.

Gustafson, E. K.

Kane, T. J.

A. C. Nilsson, T. J. Kane, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 912, 13 (1988).

T. J. Kane, A. C. Nilsson, R. L. Byer, Opt. Lett. 12, 175 (1987).

T. J. Kane, R. L. Byer, Opt. Lett. 10, 65 (1985).

Kimble, H. J.

Kogelnik, H.

Kozlovsky, W. J.

W. J. Kozlovsky, E. K. Gustafson, R. C. Eckardt, R. L. Byer, Opt. Lett. 13, 1102 (1988).

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. QE-24, 913 (1988).

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 62, 20 (1986).

Lawrence, M.

G. E. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).

Li, T.

Miller, R. C.

J. A. Giordmaine, R. C. Miller, in Physics of Quantum Electronics, P. L. Kelly, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1966),pp. 31–42.

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. QE-24, 913 (1988).

Nightingale, J. L.

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 62, 20 (1986).

Nilsson, A. C.

A. C. Nilsson, T. J. Kane, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 912, 13 (1988).

T. J. Kane, A. C. Nilsson, R. L. Byer, Opt. Lett. 12, 175 (1987).

Reade, G. E.

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 62, 20 (1986).

Rybicki, A.

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 62, 20 (1986).

Siegman, A. E.

Silva, W. J.

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 62, 20 (1986).

Smith, R. G.

R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).

Tomaschke, H. E.

D. A. Bryan, R. Gerson, H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).

Wu, L.-A.

Xiao, M.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. A. Bryan, R. Gerson, H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).

IEEE J. Quantum Electron. (4)

R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).

J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).

T. F. Ewanizky, IEEE J. Quantum Electron. QE-14, 962 (1978).

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. QE-24, 913 (1988).

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

G. E. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

A. C. Nilsson, T. J. Kane, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 912, 13 (1988).

J. L. Nightingale, W. J. Silva, G. E. Reade, A. Rybicki, W. J. Kozlovsky, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 62, 20 (1986).

Other (2)

R. L. Byer, in Treatise in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1973), pp. 587–702.

J. A. Giordmaine, R. C. Miller, in Physics of Quantum Electronics, P. L. Kelly, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1966),pp. 31–42.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Doubly resonant OPO monolithic MgO:LiNbO3 ring cavity. Ppump, pump power; Pout, output power, (b) Experimental setup for the OPO showing the diode-laser-pumped Nd:YAG laser, the external-cavity resonant doubler, and the doubly resonant OPO.

Fig. 2
Fig. 2

Pump depletion for the OPO and the corresponding OPO output at 230-mW peak pump power. The solid line represents the undepleted pump pulse shape.

Fig. 3
Fig. 3

Observed output wavelengths versus temperature for the monolithic MgO:LiNbO3 OPO. The bars represent the electric-field tuning range of the output wavelength observed at a constant temperature. The solid line is the calculated fit at a constant voltage.

Metrics