Abstract

A simple model is presented to describe mode locking in a laser coupled to a nonlinear resonator. It reveals a new mechanism for pulse shortening and shows that shortening does not rely on dispersion in the auxiliary cavity. Experimental results are given to support the basic predictions of the model.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, Opt. Lett. 9, 13 (1984).
  2. K. J. Blow, D. Wood, J. Opt. Soc. Am. B 5, 629 (1988).
  3. F. Ouellette, M. Piche, J. Opt. Soc. Am. B 5, 1228 (1988).
  4. L. E. Dahlstrom, Opt. Commun. 5, 157 (1972).
  5. F. Ouellette, M. Piché, Opt. Commun. 60, 99 (1986).
  6. P. N. Kean, R. S. Grant, X. Zhu, D. W. Crust, D. Burns, W. Sibbett, in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper PD7.
  7. K. J. Blow, B. P. Nelson, in Proceedings of the Sixth International Conference on Ultrafast Phenomena (Springer-Verlag, Kyoto, Japan, 1988), paper WC4.
  8. H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984). Here we use a more convenient phase reference for the scattering matrix of the mirror.
  9. M. S. Stix, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 520 (1983).
  10. F. M. Mitschke, L. F. Mollenauer, IEEE J. Quantum Electron. QE-22, 2242 (1986).
  11. P. A. Belanger, J. Opt. Soc. Am. B 5, 793 (1988).

1988 (3)

1986 (2)

F. M. Mitschke, L. F. Mollenauer, IEEE J. Quantum Electron. QE-22, 2242 (1986).

F. Ouellette, M. Piché, Opt. Commun. 60, 99 (1986).

1984 (1)

1983 (1)

M. S. Stix, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 520 (1983).

1972 (1)

L. E. Dahlstrom, Opt. Commun. 5, 157 (1972).

Belanger, P. A.

Blow, K. J.

K. J. Blow, D. Wood, J. Opt. Soc. Am. B 5, 629 (1988).

K. J. Blow, B. P. Nelson, in Proceedings of the Sixth International Conference on Ultrafast Phenomena (Springer-Verlag, Kyoto, Japan, 1988), paper WC4.

Burns, D.

P. N. Kean, R. S. Grant, X. Zhu, D. W. Crust, D. Burns, W. Sibbett, in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper PD7.

Crust, D. W.

P. N. Kean, R. S. Grant, X. Zhu, D. W. Crust, D. Burns, W. Sibbett, in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper PD7.

Dahlstrom, L. E.

L. E. Dahlstrom, Opt. Commun. 5, 157 (1972).

Grant, R. S.

P. N. Kean, R. S. Grant, X. Zhu, D. W. Crust, D. Burns, W. Sibbett, in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper PD7.

Haus, H. A.

H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984). Here we use a more convenient phase reference for the scattering matrix of the mirror.

Ippen, E. P.

M. S. Stix, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 520 (1983).

Kean, P. N.

P. N. Kean, R. S. Grant, X. Zhu, D. W. Crust, D. Burns, W. Sibbett, in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper PD7.

Mitschke, F. M.

F. M. Mitschke, L. F. Mollenauer, IEEE J. Quantum Electron. QE-22, 2242 (1986).

Mollenauer, L. F.

F. M. Mitschke, L. F. Mollenauer, IEEE J. Quantum Electron. QE-22, 2242 (1986).

L. F. Mollenauer, R. H. Stolen, Opt. Lett. 9, 13 (1984).

Nelson, B. P.

K. J. Blow, B. P. Nelson, in Proceedings of the Sixth International Conference on Ultrafast Phenomena (Springer-Verlag, Kyoto, Japan, 1988), paper WC4.

Ouellette, F.

F. Ouellette, M. Piche, J. Opt. Soc. Am. B 5, 1228 (1988).

F. Ouellette, M. Piché, Opt. Commun. 60, 99 (1986).

Piche, M.

Piché, M.

F. Ouellette, M. Piché, Opt. Commun. 60, 99 (1986).

Sibbett, W.

P. N. Kean, R. S. Grant, X. Zhu, D. W. Crust, D. Burns, W. Sibbett, in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper PD7.

Stix, M. S.

M. S. Stix, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 520 (1983).

Stolen, R. H.

Wood, D.

Zhu, X.

P. N. Kean, R. S. Grant, X. Zhu, D. W. Crust, D. Burns, W. Sibbett, in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper PD7.

IEEE J. Quantum Electron. (2)

M. S. Stix, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 520 (1983).

F. M. Mitschke, L. F. Mollenauer, IEEE J. Quantum Electron. QE-22, 2242 (1986).

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

L. E. Dahlstrom, Opt. Commun. 5, 157 (1972).

F. Ouellette, M. Piché, Opt. Commun. 60, 99 (1986).

Opt. Lett. (1)

Other (3)

P. N. Kean, R. S. Grant, X. Zhu, D. W. Crust, D. Burns, W. Sibbett, in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper PD7.

K. J. Blow, B. P. Nelson, in Proceedings of the Sixth International Conference on Ultrafast Phenomena (Springer-Verlag, Kyoto, Japan, 1988), paper WC4.

H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984). Here we use a more convenient phase reference for the scattering matrix of the mirror.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental configuration with the color-center laser coupled to an external fiber resonator. M’s, mirrors; BS’s, beam splitters; VRAMP, ramp velocity; SHG, second-harmonic generation; XTAL, F-center crystal.

Fig. 2
Fig. 2

Incident (a1) and reflected (b1) pulse shapes at mirror M0. The solid curves are for ϕ = 0, κ = π; the dashed curves are for ϕ = −π/2,κ = π/2. All pulses are normalized to unity peak amplitude.

Fig. 3
Fig. 3

Variations of internal power, output power, and second-harmonic generation (SHG) as a function of the length of the fiber cavity. Exact cavity match is at τ = 0.

Fig. 4
Fig. 4

Intensity autocorrelation traces of the laser (a) without and (b) with an optimally adjusted fiber cavity.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

b 1 = r a 1 + 1 r 2 a 2 ,
b 2 = 1 r 2 a 1 r a 2 .
a 2 ( t ) = L exp ( j { ϕ + κ [ | a 2 ( t ) | 2 | a 2 ( 0 ) | 2 ) ] } ) , b 2 ( t ) = L exp [ j ( ϕ + Φ ) ] b 2 ( t ) ,
Φ κ [ | a 2 ( t ) | 2 | a 2 ( 0 ) | 2 ] .
Γ = b 1 a 1 = 1 + r L e j ( ϕ + Φ ) r + 1 L e j ( ϕ + Φ ) .
Γ = r + L ( 1 r 2 ) e j ϕ ( 1 j Φ ) .
| Γ | r + L ( 1 r 2 ) Φ .

Metrics