Abstract

Optically pumped, single-frequency, Nd-doped, solid-state lasers have been constructed using flat–flat cavities, which were diced from large dielectrically coated wafers of various crystals. For example, a Nd:YAG laser with a cavity length of 730 μm has operated at room temperature in a single longitudinal mode from a threshold of less than 1 mW to greater than 40 times the threshold. The slope efficiency was greater than 30%. Heterodyne measurements showed an instrument-limited linewidth of 5 kHz. The microchip lasers demonstrate ways to reduce greatly the cost and complexity of fabricating small lasers and electro-optic devices.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a complete review of diode-pumped solid-state lasers, see T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-6, 895 (1988).
  2. T. J. Kane, A. C. Nilsson, R. L. Byer, Opt. Lett. 12, 175 (1987).
  3. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
  4. A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, Opt. Lett. 10, 484 (1985).
  5. K. Kubodera, J. Noda, Appl. Opt. 12, 3466 (1982).
  6. G. Winter, P. G. Möckel, R. Oberbacher, L. Vité, Appl. Phys. 11, 121(1976).
  7. P. Esherick, A. Owyoung, in Technical Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper THB2.
  8. A. Owyoung, P. Esherick, Opt. Lett. 12, 999 (1987).

1988 (1)

For a complete review of diode-pumped solid-state lasers, see T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-6, 895 (1988).

1987 (2)

1985 (2)

1982 (1)

K. Kubodera, J. Noda, Appl. Opt. 12, 3466 (1982).

1976 (1)

G. Winter, P. G. Möckel, R. Oberbacher, L. Vité, Appl. Phys. 11, 121(1976).

Byer, R. L.

For a complete review of diode-pumped solid-state lasers, see T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-6, 895 (1988).

T. J. Kane, A. C. Nilsson, R. L. Byer, Opt. Lett. 12, 175 (1987).

B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).

Dixon, G. J.

Esherick, P.

A. Owyoung, P. Esherick, Opt. Lett. 12, 999 (1987).

A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, Opt. Lett. 10, 484 (1985).

P. Esherick, A. Owyoung, in Technical Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper THB2.

Fan, T. Y.

For a complete review of diode-pumped solid-state lasers, see T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-6, 895 (1988).

Hadley, G. R.

Kane, T. J.

Kubodera, K.

K. Kubodera, J. Noda, Appl. Opt. 12, 3466 (1982).

Möckel, P. G.

G. Winter, P. G. Möckel, R. Oberbacher, L. Vité, Appl. Phys. 11, 121(1976).

Nilsson, A. C.

Noda, J.

K. Kubodera, J. Noda, Appl. Opt. 12, 3466 (1982).

Oberbacher, R.

G. Winter, P. G. Möckel, R. Oberbacher, L. Vité, Appl. Phys. 11, 121(1976).

Owyoung, A.

A. Owyoung, P. Esherick, Opt. Lett. 12, 999 (1987).

A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, Opt. Lett. 10, 484 (1985).

P. Esherick, A. Owyoung, in Technical Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper THB2.

Rahn, L. A.

Schmitt, R. L.

Vité, L.

G. Winter, P. G. Möckel, R. Oberbacher, L. Vité, Appl. Phys. 11, 121(1976).

Winter, G.

G. Winter, P. G. Möckel, R. Oberbacher, L. Vité, Appl. Phys. 11, 121(1976).

Zhou, B.

Appl. Opt. (1)

K. Kubodera, J. Noda, Appl. Opt. 12, 3466 (1982).

Appl. Phys. (1)

G. Winter, P. G. Möckel, R. Oberbacher, L. Vité, Appl. Phys. 11, 121(1976).

IEEE J. Quantum Electron. (1)

For a complete review of diode-pumped solid-state lasers, see T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-6, 895 (1988).

Opt. Lett. (4)

Other (1)

P. Esherick, A. Owyoung, in Technical Digest of the Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper THB2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Instrument-limited spectrometer trace of the output of a Nd:YAG microchip laser at room temperature.

Fig. 2
Fig. 2

Input–output power characteristics of a Nd:YAG microchip laser at room temperature. The input power is the absorbed pump power; the output power was measured from the output face of the cavity only.

Fig. 3
Fig. 3

Instrument-limited heterodyne spectrum of two cw Nd:YAG microchip lasers (a) on a logarithmic scale and (b) on a linear scale.

Metrics