Abstract

A 2.0-mJ/pulse, 2-nsec, single-longitudinal-mode Ti:sapphire laser oscillator has been demonstrated in a compact grazing-incidence cavity configuration similar to a Littman arrangement. The oscillator’s output beam quality is TEM00, making it attractive for doubling and mixing applications. With currently available optics the laser is tunable over greater than 2500 cm−1 from 746 to 918 nm.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Littman, Appl. Opt. 23, 4465 (1984); M. G. Littman, H. J. Metcalf, Appl. Opt. 17, 2224 (1978); I. Shoshan, N. Danon, U. Oppenheim, J. Appl. Phys. 48, 4495 (1977); M. G. Littman, Opt. Lett. 3, 138 (1978); S. Saikan, Appl. Phys. 17, 41 (1978).
  2. P. A. Schulz, A. Sanchez, R. E. Fahley, A. J. Strauss, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), paper THQ2, p. 296.
  3. M. Littman, J. Montgomery, Laser Focus 24(2), 70 (1988); K. Liu, M. G. Littman, Opt. Lett. 6, 117 (1981).

1988 (1)

M. Littman, J. Montgomery, Laser Focus 24(2), 70 (1988); K. Liu, M. G. Littman, Opt. Lett. 6, 117 (1981).

1984 (1)

Fahley, R. E.

P. A. Schulz, A. Sanchez, R. E. Fahley, A. J. Strauss, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), paper THQ2, p. 296.

Littman, M.

M. Littman, J. Montgomery, Laser Focus 24(2), 70 (1988); K. Liu, M. G. Littman, Opt. Lett. 6, 117 (1981).

Littman, M. G.

Montgomery, J.

M. Littman, J. Montgomery, Laser Focus 24(2), 70 (1988); K. Liu, M. G. Littman, Opt. Lett. 6, 117 (1981).

Sanchez, A.

P. A. Schulz, A. Sanchez, R. E. Fahley, A. J. Strauss, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), paper THQ2, p. 296.

Schulz, P. A.

P. A. Schulz, A. Sanchez, R. E. Fahley, A. J. Strauss, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), paper THQ2, p. 296.

Strauss, A. J.

P. A. Schulz, A. Sanchez, R. E. Fahley, A. J. Strauss, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), paper THQ2, p. 296.

Appl. Opt. (1)

Laser Focus (1)

M. Littman, J. Montgomery, Laser Focus 24(2), 70 (1988); K. Liu, M. G. Littman, Opt. Lett. 6, 117 (1981).

Other (1)

P. A. Schulz, A. Sanchez, R. E. Fahley, A. J. Strauss, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), paper THQ2, p. 296.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Components of the SLM, tunable, pulsed Ti:sapphire laser oscillator. The cavity length is L1 + L2, where L1 is the distance from the grating to the tuning mirror and L2 is the distance from the grating to the back mirror.

Fig. 2
Fig. 2

Photograph of a SLM Ti:sapphire oscillator. The TI:sapphire brick measures 1 cm × 1 cm × 2 cm; the grating has a diameter of 5 cm

Fig. 3
Fig. 3

Measured experimental results showing multimode (left) and SLM (right) results. The temporal pulse shapes were taken with a Tektronic 7104 oscilloscope and a fast Hamamatsu detector. The ring patterns were taken with a 10-GHz étalon. Both the temporal shapes and the étalon results were measured after the 0.8-μm output of the oscillator was doubled.

Fig. 4
Fig. 4

Plot of calculated mode fidelity (I′/I) versus (δx/x) for various values of gain. (δx/x) is the fractional gain region walk-off per cavity round trip; the gain region has a diameter of 2x.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

cos α + sin θ m = m λ / d ,
log ( I I start ) [ N ( 1 γ ) + γ 3 N 2 ( N 1 ) ( δ x x ) 2 ] log ( R ) ,
δ x ( mm ) = 0 . 23 λ 2 ( μ m ) α ( deg ) d ( μ m ) ( L 2 / L 1 1 + L 2 / L 1 ) .
β N 2 ( L 1 + L 2 ) λ 2 N / π 2 x 3 .
Δ α Δ λ / α d = λ 2 / 2 α d ( L 1 + L 2 ) .
( L 1 + L 2 ) π 2 x 3 / 2 ( d α N ) 1 / 2 .
( δ x x ) 2 . 6 λ 2 ( μ m ) N 1 / 3 { 1 [ α ( deg ) d ( μ m ) ] 4 L 2 3 ( L 1 + L 2 ) 5 } 1 / 3 .

Metrics