Abstract

Uncompensated phase errors present in synthetic-aperture-radar data can have a disastrous effect on reconstructed image quality. We present a new iterative algorithm that holds promise of being a robust estimator and corrector for arbitrary phase errors. Our algorithm is similar in many respects to speckle processing methods currently used in optical astronomy. We demonstrate its ability to focus scenes containing large amounts of phase error regardless of the phase-error structure or its source. The algorithm works extremely well in both high and low signal-to-clutter conditions without human intervention.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Brown, L. J. Porcello, IEEE Spectrum 6, 111 (1962).
  2. D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
  3. D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).
  4. A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).
  5. L. Cutrona, E. N. Leith, L. J. Porcello, W. E. Vivian, Proc. IEEE 54, 1026 (1966).
  6. M. Haney, D. Psaltis, Appl. Opt. 27, 1786 (1988).
  7. J. C. Kirk, IEEE Trans. Aerosp. Electron. Syst. AES-11, 326 (1975).
  8. W. D. Brown, D. C. Ghiglia, J. Opt. Soc. Am. A 5, 924 (1988).
  9. D. C. Ghiglia, W. D. Brown, J. Opt. Soc. Am. A 5, 942 (1988).
  10. R. H. T. Bates, F. M. Cady, Opt. Commun. 32, 365 (1980).
  11. A. Labeyrie, Astron. Astrophys. 6, 85 (1970).
  12. K. Knox, in Digest of International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1975), pp. 94–97.
  13. K. T. Knox, B. J. Thompson, Astrophys. J. 193, L45 (1974).

1988 (3)

1984 (1)

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).

1983 (1)

D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).

1980 (1)

R. H. T. Bates, F. M. Cady, Opt. Commun. 32, 365 (1980).

1975 (1)

J. C. Kirk, IEEE Trans. Aerosp. Electron. Syst. AES-11, 326 (1975).

1974 (1)

K. T. Knox, B. J. Thompson, Astrophys. J. 193, L45 (1974).

1970 (1)

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

1966 (1)

L. Cutrona, E. N. Leith, L. J. Porcello, W. E. Vivian, Proc. IEEE 54, 1026 (1966).

1962 (1)

W. M. Brown, L. J. Porcello, IEEE Spectrum 6, 111 (1962).

Ausherman, D. A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).

Bates, R. H. T.

R. H. T. Bates, F. M. Cady, Opt. Commun. 32, 365 (1980).

Brown, W. D.

Brown, W. M.

W. M. Brown, L. J. Porcello, IEEE Spectrum 6, 111 (1962).

Cady, F. M.

R. H. T. Bates, F. M. Cady, Opt. Commun. 32, 365 (1980).

Cutrona, L.

L. Cutrona, E. N. Leith, L. J. Porcello, W. E. Vivian, Proc. IEEE 54, 1026 (1966).

Ghiglia, D. C.

Haney, M.

Jenkins, W. K.

D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).

Jones, H. M.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).

Kirk, J. C.

J. C. Kirk, IEEE Trans. Aerosp. Electron. Syst. AES-11, 326 (1975).

Knox, K.

K. Knox, in Digest of International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1975), pp. 94–97.

Knox, K. T.

K. T. Knox, B. J. Thompson, Astrophys. J. 193, L45 (1974).

Kozma, A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).

Labeyrie, A.

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

Leith, E. N.

L. Cutrona, E. N. Leith, L. J. Porcello, W. E. Vivian, Proc. IEEE 54, 1026 (1966).

Moran, J. M.

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

Munson, D. C.

D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).

O’Brien, J. D.

D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).

Poggio, E. C.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).

Porcello, L. J.

L. Cutrona, E. N. Leith, L. J. Porcello, W. E. Vivian, Proc. IEEE 54, 1026 (1966).

W. M. Brown, L. J. Porcello, IEEE Spectrum 6, 111 (1962).

Psaltis, D.

Swenson, G. W.

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

Thompson, A. R.

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

Thompson, B. J.

K. T. Knox, B. J. Thompson, Astrophys. J. 193, L45 (1974).

Vivian, W. E.

L. Cutrona, E. N. Leith, L. J. Porcello, W. E. Vivian, Proc. IEEE 54, 1026 (1966).

Walker, J. L.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).

Appl. Opt. (1)

Astron. Astrophys. (1)

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

Astrophys. J. (1)

K. T. Knox, B. J. Thompson, Astrophys. J. 193, L45 (1974).

IEEE Spectrum (1)

W. M. Brown, L. J. Porcello, IEEE Spectrum 6, 111 (1962).

IEEE Trans. Aerosp. Electron. Syst. (2)

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).

J. C. Kirk, IEEE Trans. Aerosp. Electron. Syst. AES-11, 326 (1975).

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

R. H. T. Bates, F. M. Cady, Opt. Commun. 32, 365 (1980).

Proc. IEEE (2)

D. C. Munson, J. D. O’Brien, W. K. Jenkins, Proc. IEEE 71, 987 (1983).

L. Cutrona, E. N. Leith, L. J. Porcello, W. E. Vivian, Proc. IEEE 54, 1026 (1966).

Other (2)

K. Knox, in Digest of International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1975), pp. 94–97.

A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical SAR imaging modality showing the relevant flight path and the terrain-illumination geometry.

Fig. 2
Fig. 2

(a) Uncompensated SAR image of the Solar Thermal Test Facility at Sandia National Laboratories, Albuquerque, New Mexico. Motion compensation was not used. (b) The image processed using seven iterations over 512 range bins of data. The array of heliostats and the shadow cast by the central receiver tower are evident.

Fig. 3
Fig. 3

(a) Uncompensated SAR image with an eighth-order polynomial phase error. This image contains high-clutter components and is lacking detectable isolated pointlike targets in the lower half of the image, (b) The image processed after six iterations using the lower 256 range bins of data for phase-error estimation.

Fig. 4
Fig. 4

Simultaneous plot of the actual (solid curve) and the estimated (dotted curve) polynomial phase error from Fig. 3. The traces have been offset vertically from each other for display purposes. The rms error between the traces is 0.23 rad.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f n ( t ) = | f n ( t ) | exp { j [ ϕ n ( t ) + ϕ ( t ) ] } for | t | T / 2 = 0 otherwise .
{ f n ( t ) } = m H ( ω ) * a m , n s ( ω ω m , n ) ,
ϕ ˙ ( t ) = Im { x * ( t ) x ˙ ( t ) } | x ( t ) | 2 .
ϕ ˙ ls ( t ) = Σ n Im { g n * ( t ) g ˙ n ( t ) } Σ n | g n ( t ) | 2 = ϕ ˙ ( t ) + Σ n | g n ( t ) | 2 ϕ ˙ n ( t ) Σ n | g n ( t ) | 2 .

Metrics