Abstract

Fresh experimental and theoretical results on thermally induced catastrophic breakdown (the fiber fuse) in optical fibers are presented, including the observation that the damage is not always irreversible and an analysis of the complex unsteady absorption–heat-conduction process that controls the effect. Good agreement with experiment is obtained with just two independent parameters. The analysis shows that the fiber fuse is a new kind of solitary thermal shock wave in whose leading edge the temperature gradients can reach several thousand kelvins per micrometer.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Johnson, R. T. Hodgson, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (personal communication, 1984).
  2. R. Kashyap, K. Blow, Electron. Lett. 24, 47 (1988).
    [CrossRef]
  3. R. Kashyap, in Proceedings of the Tenth International Conference on Lasers (Society for Optical and Quantum Electronics, McLean, Va., 1987).
  4. D. P. Hand, J. E. Townsend, P. St. J. Russell, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper WJ1.
  5. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984), Chap. 17.
  6. G. M. Zverev, V. A. Pashkov, JETP Lett. 9, 61 (1969).
  7. Yu. P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, New York, 1977), pp. 224–250.

1988 (1)

R. Kashyap, K. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

1969 (1)

G. M. Zverev, V. A. Pashkov, JETP Lett. 9, 61 (1969).

Blow, K.

R. Kashyap, K. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

Hand, D. P.

D. P. Hand, J. E. Townsend, P. St. J. Russell, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper WJ1.

Hodgson, R. T.

M. Johnson, R. T. Hodgson, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (personal communication, 1984).

Johnson, M.

M. Johnson, R. T. Hodgson, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (personal communication, 1984).

Kashyap, R.

R. Kashyap, K. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

R. Kashyap, in Proceedings of the Tenth International Conference on Lasers (Society for Optical and Quantum Electronics, McLean, Va., 1987).

Pashkov, V. A.

G. M. Zverev, V. A. Pashkov, JETP Lett. 9, 61 (1969).

Raizer, Yu. P.

Yu. P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, New York, 1977), pp. 224–250.

Russell, P. St. J.

D. P. Hand, J. E. Townsend, P. St. J. Russell, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper WJ1.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984), Chap. 17.

Townsend, J. E.

D. P. Hand, J. E. Townsend, P. St. J. Russell, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper WJ1.

Zverev, G. M.

G. M. Zverev, V. A. Pashkov, JETP Lett. 9, 61 (1969).

Electron. Lett. (1)

R. Kashyap, K. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

JETP Lett. (1)

G. M. Zverev, V. A. Pashkov, JETP Lett. 9, 61 (1969).

Other (5)

Yu. P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, New York, 1977), pp. 224–250.

M. Johnson, R. T. Hodgson, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (personal communication, 1984).

R. Kashyap, in Proceedings of the Tenth International Conference on Lasers (Society for Optical and Quantum Electronics, McLean, Va., 1987).

D. P. Hand, J. E. Townsend, P. St. J. Russell, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper WJ1.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984), Chap. 17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectrum of backscattered radiation from the fuse at d = 40 μm, d0 = 125 μm, I0 = 2.8 mW/μm2, vf = 0.16 m/sec. The solid line is the blackbody radiation curve for 5400°C.

Fig. 2
Fig. 2

Velocity versus intensity for a variety of different fiber geometries (inset is schematic diagram of fiber cross section, with d being the mode-spot diameter). Note that the curve for d = d0 applies to the one-dimensional case when no heat is lost to the cladding. The experimental data points for d = 1.54 μm (fit achieved at αp = 5.6 × 104 m−1) agree well with the theory; the peak core temperature Tp, normalized with respect to Tm, is also plotted in this case. In a fiber with d = 40 μm and d0 = 125 μm, I0 = 2.8 mW/μm2 was sufficient to sustain fuse propagation at vf = 0.16 m/sec, close to the origin of this plot.

Fig. 3
Fig. 3

Solitary-wave temperature profiles (T, core temperature; θ, cladding temperature) for a variety of different intensities at d = 3 μm and d0 = 60 μm. Note that the absorption in the core has been assumed reversible; hence the change in slope in the trailing edges of the higher-intensity profiles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α ( T ) = α 0 exp ( - E f / k B T ) ,
Γ S - ( I 0 / k ) [ 1 - exp 0 η α ( T ) d η ] = 0 , Γ ( θ - T a ) + [ 16 d / d 0 ( d 0 2 - d 2 ) ] 0 η ( T - θ ) d η = 0 .
( 2 ρ v f C p / k α p ) = - 1 + { 1 + [ 4 I 0 / k α p ( T t - T a ) ] } 1 / 2 .

Metrics