Abstract

A simple binary polarization modulator is described that periodically switches the polarization of a monochromatic light beam between orthogonal linear, circular, or elliptical states. It consists of a synchronously rotating disk whose planar surface is divided into annuli. Each annulus is segmented by radial lines into sectors, and each sector is coated by a thin film that reflects light of only one of two orthogonal states. Multiple annuli may be used for multiple-wavelength operation. Although a single layer is adequate to achieve the desired effect, multilayers would be required for higher performance standards.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Billardon, J. Badoz, C. R. Acad. Sci. 262, 1672 (1966).
  2. J. C. Kemp, J. Opt. Soc. Am. 59, 950 (1969).
  3. See, e.g., L. A. Nafie, T. A. Keiderling, P. J. Stephens, J. Am. Chem. Soc. 98, 2715 (1976).
    [CrossRef]
  4. See, e.g., F. A. Modine, R. W. Major, Appl. Opt. 14, 761 (1975).
    [CrossRef] [PubMed]
  5. A. J. Hunt, D. R. Huffman, Rev. Sci. Instrum. 44, 1753 (1973).
    [CrossRef]
  6. R. J. Perry, A. J. Hunt, D. R. Huffman, Appl. Opt. 17, 2700 (1978).
    [CrossRef] [PubMed]
  7. S. N. Jasperson, S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).
    [CrossRef]
  8. B. Drevillon, J. Perrin, R. Marbot, A. Violet, J. L. Dalby, Rev. Sci. Instrum. 53, 969 (1982).
    [CrossRef]
  9. P. J. Stephens, Proc. Soc. Photo-Opt. Instrum. Eng. 88, 75 (1976).
  10. M. F. Maestre, C. Bustamante, J. Subirana, T. Hays, I. Tinoco, Nature 298, 773 (1982).
    [CrossRef] [PubMed]
  11. V. A. Misek, U.S. Patent4,333,008 (June1, 1982).
  12. R. M. A. Azzam, Appl. Opt. 23, 1296 (1984).
    [CrossRef] [PubMed]
  13. R. M. A. Azzam, J. Opt. Soc. Am. A 2, 189 (1985).
    [CrossRef]
  14. R. M. A. Azzam, Opt. Commun. 55, 297 (1985).
    [CrossRef]
  15. R. M. A. Azzam, J. Opt. Soc. Am. A 5, 1576 (1988).
    [CrossRef]
  16. A conventional mechanical chopper may be transformed into a polarization modulator by fitting the apertures of its wheel with polarizing optical elements. This brute-force approach suffers from a serious limitation. The principal axes of a polarizing element (e.g., a sheet polarizer or wave retarder) rotate during the gating time of a light pulse, making the polarization continuously variable instead of being strictly constant. Therefore, binary polarization modulation is not strictly produced. This effect is absent in the reflective thin-film BPM of this Letter.

1988

1985

1984

1982

M. F. Maestre, C. Bustamante, J. Subirana, T. Hays, I. Tinoco, Nature 298, 773 (1982).
[CrossRef] [PubMed]

B. Drevillon, J. Perrin, R. Marbot, A. Violet, J. L. Dalby, Rev. Sci. Instrum. 53, 969 (1982).
[CrossRef]

1978

1976

P. J. Stephens, Proc. Soc. Photo-Opt. Instrum. Eng. 88, 75 (1976).

See, e.g., L. A. Nafie, T. A. Keiderling, P. J. Stephens, J. Am. Chem. Soc. 98, 2715 (1976).
[CrossRef]

1975

1973

A. J. Hunt, D. R. Huffman, Rev. Sci. Instrum. 44, 1753 (1973).
[CrossRef]

1969

S. N. Jasperson, S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).
[CrossRef]

J. C. Kemp, J. Opt. Soc. Am. 59, 950 (1969).

1966

M. Billardon, J. Badoz, C. R. Acad. Sci. 262, 1672 (1966).

Azzam, R. M. A.

Badoz, J.

M. Billardon, J. Badoz, C. R. Acad. Sci. 262, 1672 (1966).

Billardon, M.

M. Billardon, J. Badoz, C. R. Acad. Sci. 262, 1672 (1966).

Bustamante, C.

M. F. Maestre, C. Bustamante, J. Subirana, T. Hays, I. Tinoco, Nature 298, 773 (1982).
[CrossRef] [PubMed]

Dalby, J. L.

B. Drevillon, J. Perrin, R. Marbot, A. Violet, J. L. Dalby, Rev. Sci. Instrum. 53, 969 (1982).
[CrossRef]

Drevillon, B.

B. Drevillon, J. Perrin, R. Marbot, A. Violet, J. L. Dalby, Rev. Sci. Instrum. 53, 969 (1982).
[CrossRef]

Hays, T.

M. F. Maestre, C. Bustamante, J. Subirana, T. Hays, I. Tinoco, Nature 298, 773 (1982).
[CrossRef] [PubMed]

Huffman, D. R.

Hunt, A. J.

Jasperson, S. N.

S. N. Jasperson, S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).
[CrossRef]

Keiderling, T. A.

See, e.g., L. A. Nafie, T. A. Keiderling, P. J. Stephens, J. Am. Chem. Soc. 98, 2715 (1976).
[CrossRef]

Kemp, J. C.

Maestre, M. F.

M. F. Maestre, C. Bustamante, J. Subirana, T. Hays, I. Tinoco, Nature 298, 773 (1982).
[CrossRef] [PubMed]

Major, R. W.

Marbot, R.

B. Drevillon, J. Perrin, R. Marbot, A. Violet, J. L. Dalby, Rev. Sci. Instrum. 53, 969 (1982).
[CrossRef]

Misek, V. A.

V. A. Misek, U.S. Patent4,333,008 (June1, 1982).

Modine, F. A.

Nafie, L. A.

See, e.g., L. A. Nafie, T. A. Keiderling, P. J. Stephens, J. Am. Chem. Soc. 98, 2715 (1976).
[CrossRef]

Perrin, J.

B. Drevillon, J. Perrin, R. Marbot, A. Violet, J. L. Dalby, Rev. Sci. Instrum. 53, 969 (1982).
[CrossRef]

Perry, R. J.

Schnatterly, S. E.

S. N. Jasperson, S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).
[CrossRef]

Stephens, P. J.

See, e.g., L. A. Nafie, T. A. Keiderling, P. J. Stephens, J. Am. Chem. Soc. 98, 2715 (1976).
[CrossRef]

P. J. Stephens, Proc. Soc. Photo-Opt. Instrum. Eng. 88, 75 (1976).

Subirana, J.

M. F. Maestre, C. Bustamante, J. Subirana, T. Hays, I. Tinoco, Nature 298, 773 (1982).
[CrossRef] [PubMed]

Tinoco, I.

M. F. Maestre, C. Bustamante, J. Subirana, T. Hays, I. Tinoco, Nature 298, 773 (1982).
[CrossRef] [PubMed]

Violet, A.

B. Drevillon, J. Perrin, R. Marbot, A. Violet, J. L. Dalby, Rev. Sci. Instrum. 53, 969 (1982).
[CrossRef]

Appl. Opt.

C. R. Acad. Sci.

M. Billardon, J. Badoz, C. R. Acad. Sci. 262, 1672 (1966).

J. Am. Chem. Soc.

See, e.g., L. A. Nafie, T. A. Keiderling, P. J. Stephens, J. Am. Chem. Soc. 98, 2715 (1976).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nature

M. F. Maestre, C. Bustamante, J. Subirana, T. Hays, I. Tinoco, Nature 298, 773 (1982).
[CrossRef] [PubMed]

Opt. Commun.

R. M. A. Azzam, Opt. Commun. 55, 297 (1985).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

P. J. Stephens, Proc. Soc. Photo-Opt. Instrum. Eng. 88, 75 (1976).

Rev. Sci. Instrum.

A. J. Hunt, D. R. Huffman, Rev. Sci. Instrum. 44, 1753 (1973).
[CrossRef]

S. N. Jasperson, S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).
[CrossRef]

B. Drevillon, J. Perrin, R. Marbot, A. Violet, J. L. Dalby, Rev. Sci. Instrum. 53, 969 (1982).
[CrossRef]

Other

V. A. Misek, U.S. Patent4,333,008 (June1, 1982).

A conventional mechanical chopper may be transformed into a polarization modulator by fitting the apertures of its wheel with polarizing optical elements. This brute-force approach suffers from a serious limitation. The principal axes of a polarizing element (e.g., a sheet polarizer or wave retarder) rotate during the gating time of a light pulse, making the polarization continuously variable instead of being strictly constant. Therefore, binary polarization modulation is not strictly produced. This effect is absent in the reflective thin-film BPM of this Letter.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

BPM in the form of a disk synchronously rotating at angular speed ω. The incident beam is linearly polarized at an azimuth α from the plane of incidence. The neighboring sectors A and B of an annular ring are coated to reflect only one of two orthogonal polarizations (e.g., p and s).

Fig. 2
Fig. 2

Schematic representation of the periodic modulation of polarization of the light reflected by the BPM. p and s identify the linear states parallel and perpendicular to the plane of incidence, respectively. Switching between orthogonal circular or elliptical states is also possible.

Fig. 3
Fig. 3

Spaced orthogonally polarized successive light pulses in a periodic pulse train. Spacing is achieved simply by separating sectors A and B in Fig. 1 by a nonreflecting gap.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϕ = ϕ B = tan - 1 N 2 ,
N 1 = 2 sin ϕ B = 2 N 2 / ( N 2 2 + 1 ) 1 / 2 ,
d A = 0.3536 ( λ / N 1 ) ,
d B = 0.
R s = [ ( N 2 2 - 1 ) / ( N 2 2 + 1 ) ] 2 ,
R p = [ R s / ( 2 - R s ) ] 2 .
( cos 2 α ) R p = ( sin 2 α ) R s
α = tan - 1 ( R p / R s ) 1 / 2 .
f BPM = ( 1 / 2 ) N f mech ,

Metrics