Abstract

By recirculating 55-psec soliton pulses (λs ~ 1600 nm) many times around a closed 42-km loop with loss exactly compensated by Raman gain (λp ~ 1497 nm), we have successfully demonstrated pulse transmission, without electronic regeneration, over distances in excess of 4000 km.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  2. A. Hasegawa, Opt. Lett. 8, 650 (1983).
    [CrossRef] [PubMed]
  3. A. Hasegawa, Appl. Opt. 23, 3302 (1984).
    [CrossRef] [PubMed]
  4. L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
    [CrossRef]
  5. J. P. Gordon, H. A. Haus, Opt. Lett. 11, 665 (1986).
    [CrossRef] [PubMed]
  6. R. H. Stolen, C. Lee, R. K. Jain, J. Opt. Soc. Am. B 1, 652 (1984).
    [CrossRef]
  7. J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
    [CrossRef]
  8. The effect should be somewhat similar to that described in Ref. 4, p. 167 ff, for soliton–soliton collisions in the presence of a net gain or loss.
  9. J. P. Gordon, Opt. Lett. 8, 596 (1983); see also F. M. Mitschke, L. F. Mollenauer, Opt. Lett. 12, 355 (1987).
    [CrossRef] [PubMed]
  10. Recirculating fiber loop memories per se are not new. See, for example, E. Desurvire, M. Digonnet, H. J. Shaw, IEEE J. Lightwave Technol. LT-4, 426 (1986).
    [CrossRef]

1986 (3)

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

J. P. Gordon, H. A. Haus, Opt. Lett. 11, 665 (1986).
[CrossRef] [PubMed]

Recirculating fiber loop memories per se are not new. See, for example, E. Desurvire, M. Digonnet, H. J. Shaw, IEEE J. Lightwave Technol. LT-4, 426 (1986).
[CrossRef]

1985 (1)

J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
[CrossRef]

1984 (2)

1983 (2)

1980 (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Bowers, J. E.

J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
[CrossRef]

Burrus, C. A.

J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
[CrossRef]

Desurvire, E.

Recirculating fiber loop memories per se are not new. See, for example, E. Desurvire, M. Digonnet, H. J. Shaw, IEEE J. Lightwave Technol. LT-4, 426 (1986).
[CrossRef]

Digonnet, M.

Recirculating fiber loop memories per se are not new. See, for example, E. Desurvire, M. Digonnet, H. J. Shaw, IEEE J. Lightwave Technol. LT-4, 426 (1986).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

J. P. Gordon, H. A. Haus, Opt. Lett. 11, 665 (1986).
[CrossRef] [PubMed]

J. P. Gordon, Opt. Lett. 8, 596 (1983); see also F. M. Mitschke, L. F. Mollenauer, Opt. Lett. 12, 355 (1987).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Hasegawa, A.

Haus, H. A.

Islam, M. N.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Jain, R. K.

Lee, C.

McCoy, R. J.

J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Shaw, H. J.

Recirculating fiber loop memories per se are not new. See, for example, E. Desurvire, M. Digonnet, H. J. Shaw, IEEE J. Lightwave Technol. LT-4, 426 (1986).
[CrossRef]

Stolen, R. H.

R. H. Stolen, C. Lee, R. K. Jain, J. Opt. Soc. Am. B 1, 652 (1984).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

J. E. Bowers, C. A. Burrus, R. J. McCoy, Electron. Lett. 21, 812 (1985).
[CrossRef]

IEEE J. Lightwave Technol. (1)

Recirculating fiber loop memories per se are not new. See, for example, E. Desurvire, M. Digonnet, H. J. Shaw, IEEE J. Lightwave Technol. LT-4, 426 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Other (1)

The effect should be somewhat similar to that described in Ref. 4, p. 167 ff, for soliton–soliton collisions in the presence of a net gain or loss.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the fiber loop and the input–output configuration.

Fig. 2
Fig. 2

Pulse train (length here slightly less than the 200- μsec round-trip time) seen 46 times as it recirculates around the loop for a total trip length of 1919 km. Horizontal scale, 1 msec/div. Note the stable amplitude with recirculation; this reflects tight control over the Raman gain. Also note that the pulse-train tops are actually flat; the apparent slant is a measurement artifact.

Fig. 3
Fig. 3

Microwave spectra of the intensity envelopes of pulses for the distances indicated. The solid curves represent the calculated spectrum of the intensity envelope of a sech2, 55-psec pulse.

Fig. 4
Fig. 4

Plot of the effective transmitted pulse width, τeff, as a function of distance for various pump-pulse repetition rates: squares, fp = 322 MHz; triangles, fp = 1.288 GHz; circles, fp = 33 GHz. Dashed curve indicates the Gordon–Haus limit (see text).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ eff = τ 0 2 + τ G 2 ,

Metrics