Abstract

The Doppler-enhanced self-diffraction configuration in photorefractive bismuth silicon oxide crystals is used to perform incoherent-to-coherent optical conversion of two-dimensional transparencies. The conversion process is described analytically, and preliminary results of converted images are shown.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fainman, C. C. Guest, S. H. Lee, Appl. Opt. 25, 1598 (1986).
    [CrossRef] [PubMed]
  2. H. Rajbenbach, J. Appl. Phys. 62, 4675 (1987).
    [CrossRef]
  3. A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).
  4. Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
    [CrossRef] [PubMed]
  5. A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).
  6. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
    [CrossRef]
  7. J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
    [CrossRef]
  8. E. Voit, P. Gunter, Opt. Lett. 12, 769 (1987).
    [CrossRef] [PubMed]
  9. A. Marrakchi, R. V. Johnson, A. R. Tanguay, IEEE J. Quantum Electron. QE-23, 2142 (1987).
    [CrossRef]

1987 (3)

H. Rajbenbach, J. Appl. Phys. 62, 4675 (1987).
[CrossRef]

A. Marrakchi, R. V. Johnson, A. R. Tanguay, IEEE J. Quantum Electron. QE-23, 2142 (1987).
[CrossRef]

E. Voit, P. Gunter, Opt. Lett. 12, 769 (1987).
[CrossRef] [PubMed]

1986 (1)

1985 (1)

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

1983 (1)

1981 (1)

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[CrossRef]

1980 (1)

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Fainman, Y.

Guest, C. C.

Gunter, P.

Huignard, J. P.

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[CrossRef]

Johnson, R. V.

A. Marrakchi, R. V. Johnson, A. R. Tanguay, IEEE J. Quantum Electron. QE-23, 2142 (1987).
[CrossRef]

Kamshilin, A. A.

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Lee, S. H.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Marrakchi, A.

A. Marrakchi, R. V. Johnson, A. R. Tanguay, IEEE J. Quantum Electron. QE-23, 2142 (1987).
[CrossRef]

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
[CrossRef] [PubMed]

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Petrov, M. P.

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Psaltis, D.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
[CrossRef] [PubMed]

Rajbenbach, H.

H. Rajbenbach, J. Appl. Phys. 62, 4675 (1987).
[CrossRef]

Shi, Y.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Tanguay, A. R.

A. Marrakchi, R. V. Johnson, A. R. Tanguay, IEEE J. Quantum Electron. QE-23, 2142 (1987).
[CrossRef]

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
[CrossRef] [PubMed]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Voit, E.

Yu, J.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Appl. Opt. (2)

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Marrakchi, R. V. Johnson, A. R. Tanguay, IEEE J. Quantum Electron. QE-23, 2142 (1987).
[CrossRef]

J. Appl. Phys. (1)

H. Rajbenbach, J. Appl. Phys. 62, 4675 (1987).
[CrossRef]

Opt. Commun. (1)

J. P. Huignard, A. Marrakchi, Opt. Commun. 38, 249 (1981).
[CrossRef]

Opt. Eng. (1)

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, Opt. Eng. 24, 124 (1985).

Opt. Lett. (1)

Sov. Tech. Phys. Lett. (1)

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the photorefractive spatial light modulation based on Doppler-enhanced two-beam coupling. The piezomirror is driven with a ramp generator to allow for a moving grating at a speed v.

Fig. 2
Fig. 2

Normalized intensity after the crystal as a function of the incoherent-to-coherent intensity ratio.

Fig. 3
Fig. 3

Polarization state of the transmitted beam for the stationary and the Doppler-shifted grating cases. The horizontal and vertical directions coincide with the edges of the crystal.

Fig. 4
Fig. 4

Experimental arrangement of the photorefractive incoherent-to-coherent optical converter. The basic components are the transparency T, the beam splitters BS1 and BS2, the lenses L1 and L2, the iris diaphragm D, the green filter F, the polarizer P, and the piezomirror PZT.

Fig. 5
Fig. 5

Incoherent-to-coherent conversion of a U.S. Air Force resolution chart.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I T ( x ) = I G ( 1 + m G cos K G x ) + I S ,
g ( x ) = α G ξ h ν G I G ( 1 + m G cos K G x ) exp ( - α G d ) + α S ξ h ν S I S exp ( - α S d ) ,
m G eff = m G 1 + α S λ S α G λ G I S I G exp [ ( α G - α S ) d ] ,
E s c = m G eff E sat ,
I 2 ( d ) = I 2 ( 0 ) exp [ ( Γ - α G ) d ]
N out = exp [ - Γ 0 d ( σ R 1 + σ R ) ] ,
S = - Γ 0 σ d ,

Metrics