Abstract

A novel method of optical-code multiplex transmission from a central location is proposed. It has the advantages that the receivers can be configured to any channel quickly, the channels have in principle zero cross talk, and the bandwidth-expansion factors are less than for other optical-code-division multiple access arrangements. The proposed method is based on arrays of optoelectronic switching detectors that are at present under development for broadband matrix switching.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Prucnal, M. A. Santoro, T. R. Fan, IEEE J. Lightwave Technol. LT-4, 547 (1986).
    [CrossRef]
  2. J. A. Salehi, C. A. Brackett, in Proceedings of IEEE International Conference on Communications (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 1601–1609.
  3. P. Healey, Electron. Lett. 17, 970 (1981).
    [CrossRef]
  4. R. I. MacDonald, D. K. W. Lam, Opt. Quantum Electron. 18, 273 (1986).
    [CrossRef]
  5. G. L. Tangonan, V. Jones, J. Pikulski, D. Jackson, D. Persechini, in Digest of Eleventh Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1988), paper WF4.

1986 (2)

P. R. Prucnal, M. A. Santoro, T. R. Fan, IEEE J. Lightwave Technol. LT-4, 547 (1986).
[CrossRef]

R. I. MacDonald, D. K. W. Lam, Opt. Quantum Electron. 18, 273 (1986).
[CrossRef]

1981 (1)

P. Healey, Electron. Lett. 17, 970 (1981).
[CrossRef]

Brackett, C. A.

J. A. Salehi, C. A. Brackett, in Proceedings of IEEE International Conference on Communications (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 1601–1609.

Fan, T. R.

P. R. Prucnal, M. A. Santoro, T. R. Fan, IEEE J. Lightwave Technol. LT-4, 547 (1986).
[CrossRef]

Healey, P.

P. Healey, Electron. Lett. 17, 970 (1981).
[CrossRef]

Jackson, D.

G. L. Tangonan, V. Jones, J. Pikulski, D. Jackson, D. Persechini, in Digest of Eleventh Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1988), paper WF4.

Jones, V.

G. L. Tangonan, V. Jones, J. Pikulski, D. Jackson, D. Persechini, in Digest of Eleventh Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1988), paper WF4.

Lam, D. K. W.

R. I. MacDonald, D. K. W. Lam, Opt. Quantum Electron. 18, 273 (1986).
[CrossRef]

MacDonald, R. I.

R. I. MacDonald, D. K. W. Lam, Opt. Quantum Electron. 18, 273 (1986).
[CrossRef]

Persechini, D.

G. L. Tangonan, V. Jones, J. Pikulski, D. Jackson, D. Persechini, in Digest of Eleventh Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1988), paper WF4.

Pikulski, J.

G. L. Tangonan, V. Jones, J. Pikulski, D. Jackson, D. Persechini, in Digest of Eleventh Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1988), paper WF4.

Prucnal, P. R.

P. R. Prucnal, M. A. Santoro, T. R. Fan, IEEE J. Lightwave Technol. LT-4, 547 (1986).
[CrossRef]

Salehi, J. A.

J. A. Salehi, C. A. Brackett, in Proceedings of IEEE International Conference on Communications (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 1601–1609.

Santoro, M. A.

P. R. Prucnal, M. A. Santoro, T. R. Fan, IEEE J. Lightwave Technol. LT-4, 547 (1986).
[CrossRef]

Tangonan, G. L.

G. L. Tangonan, V. Jones, J. Pikulski, D. Jackson, D. Persechini, in Digest of Eleventh Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1988), paper WF4.

Electron. Lett. (1)

P. Healey, Electron. Lett. 17, 970 (1981).
[CrossRef]

IEEE J. Lightwave Technol. (1)

P. R. Prucnal, M. A. Santoro, T. R. Fan, IEEE J. Lightwave Technol. LT-4, 547 (1986).
[CrossRef]

Opt. Quantum Electron. (1)

R. I. MacDonald, D. K. W. Lam, Opt. Quantum Electron. 18, 273 (1986).
[CrossRef]

Other (2)

G. L. Tangonan, V. Jones, J. Pikulski, D. Jackson, D. Persechini, in Digest of Eleventh Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1988), paper WF4.

J. A. Salehi, C. A. Brackett, in Proceedings of IEEE International Conference on Communications (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 1601–1609.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optoelectronic complementary correlation detector. The fiber (dashed lines) delays differ by increments equal to the chip period. The detectors are sensitive only when biased. The target sequence is set up as a pattern of positive bias, and its complement is set up as a pattern of negative bias. The overall photocurrent is proportional to the difference between the signal correlation with the target and with its complement. The additional L/2 elements at each end are added to prebias arriving signals.

Fig. 2
Fig. 2

Demultiplexing of an A code by simple correlation and by complementary correlation with rectification. The code length is 13, with a Hamming weight of 6. Seven channels with random signals are present. The signal shown is that corresponding to one channel carrying the binary information indicated below the plots.

Fig. 3
Fig. 3

Ratio of the bandwidth expansion factor (chips per bit) to the number of channels carried, as a function of the code weight factor. The A codes of weights 2, 4, and 6 as well as prime codes are shown. The number of channels carried is indicated at each point. The A codes have higher weight factors and smaller bandwidth expansion per channel than prime codes, and these advantages increase with increasing numbers of multiplexed channels.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( t ) = n = 0 N S ( t + n T ) { T ( n T ) [ U ( n T ) T ( n T ) ] } = 2 R ( t ) W ( t ) ,
R ( t ) = n = 0 N S ( t + n T ) T ( n T ) ,
W ( t ) = n = 0 N S ( t + n T ) U ( n T ) .

Metrics