Abstract

A simple open-loop approach to a standard fiber-optic gyroscope that uses an intensity-modulated source is described. Direct readout of the Sagnac effect in an open-loop form is obtained by applying a sinusoidal modulation to the source and the phase modulator at the proper frequency, with the modulation depth of the source adjusted appropriately. Experimental results show good linearity over a wide dynamic range.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, Opt. Lett. 5, 173 (1980).
    [CrossRef] [PubMed]
  2. E. L. Davis, S. Ezekiel, Opt. Lett. 6, 505 (1981).
    [CrossRef] [PubMed]
  3. B. Culshaw, I. P. Giles, IEEE J. Quantum Electron. QE-18, 690 (1982).
    [CrossRef]
  4. B. Y. Kim, H. J. Shaw, Opt. Lett. 9, 375 (1984).
    [CrossRef] [PubMed]
  5. K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
    [CrossRef]
  6. D. Eberhard, E. Voges, Opt. Lett. 9, 22 (1984).
    [CrossRef] [PubMed]
  7. A. D. Kersey, A. C. Lewin, D. A. Jackson, Electron. Lett. 20, 368 (1984).
    [CrossRef]
  8. B. Y. Kim, H. J. Shaw, Opt. Lett. 9, 378 (1984).
    [CrossRef] [PubMed]

1984 (4)

1983 (1)

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

1982 (1)

B. Culshaw, I. P. Giles, IEEE J. Quantum Electron. QE-18, 690 (1982).
[CrossRef]

1981 (1)

1980 (1)

Böhm, K.

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Culshaw, B.

B. Culshaw, I. P. Giles, IEEE J. Quantum Electron. QE-18, 690 (1982).
[CrossRef]

Davis, E. L.

Eberhard, D.

Ezekiel, S.

Giles, I. P.

B. Culshaw, I. P. Giles, IEEE J. Quantum Electron. QE-18, 690 (1982).
[CrossRef]

Jackson, D. A.

A. D. Kersey, A. C. Lewin, D. A. Jackson, Electron. Lett. 20, 368 (1984).
[CrossRef]

Kersey, A. D.

A. D. Kersey, A. C. Lewin, D. A. Jackson, Electron. Lett. 20, 368 (1984).
[CrossRef]

Kim, B. Y.

Lewin, A. C.

A. D. Kersey, A. C. Lewin, D. A. Jackson, Electron. Lett. 20, 368 (1984).
[CrossRef]

Marten, P.

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Petermann, K.

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Shaw, H. J.

Ulrich, R.

Voges, E.

Weidel, E.

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Electron. Lett. (2)

K. Böhm, P. Marten, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

A. D. Kersey, A. C. Lewin, D. A. Jackson, Electron. Lett. 20, 368 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. Culshaw, I. P. Giles, IEEE J. Quantum Electron. QE-18, 690 (1982).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the open-loop fiber-optic gyroscope with intensity-modulated source.

Fig. 2
Fig. 2

Experimental results: top, low rotation, ±12°/sec; bottom, high rotation, ±300°/sec.

Fig. 3
Fig. 3

The waveform of the bandpass-filter outputs for rotation rates. Upper traces, waveform of the driving signal; lower traces, carrier signals for rotation rates of (a) 0°/sec (ϕR = 0), (b) 26°/sec (ϕR = π/2), (c) 52°/sec (ϕR = π), (d) 104°/sec (ϕR = 2π).

Fig. 4
Fig. 4

Output phase error, ΔϕR′ = ϕR′ − ϕR, due to each error source: top, effect of α, β = γ = 0; center effect of β, α = γ = 0; bottom, effect of γ, α = β = 0 and θ = π/4.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I d ( t ) I s ( t ) [ 1 + cos ( η sin ω m t ϕ R ) ] I s ( t ) { 1 + cos ϕ R [ J 0 ( η ) + 2 k = 1 J 2 k ( η ) cos 2 k ω m t ] + sin ϕ R [ 2 k = 1 J 2 k 1 ( η ) sin ( 2 k 1 ) ω m t ] } ,
I 1 ( t ) 2 J 1 ( η ) ( k η cos ω m t cos ϕ R + sin ω m t sin ϕ R ) + K cos ω m t ( n = 1 ) ,
I n ( t ) 2 J n ( η ) [ A cos ( n ω m t ) cos ϕ R + B sin ( n ω m t ) sin ϕ R ] n 2 ,
I n ( t ) J n ( η ) cos ( n ω m t ϕ R ) .
I 2 ( t ) cos 2 ω m t cos ϕ R + ( 1 + α ) sin 2 ω m t sin ϕ R + β cos 2 ω m t sin ϕ R + γ cos ( 2 ω m t + θ ) .
tan ϕ R = [ ( 1 + α ) sin ϕ R γ sin θ ] / ( cos ϕ R + β sin ϕ R + γ cos θ ) ,

Metrics