Abstract

We demonstrate a modulation-instability-based fiber interferometer switch, an ultrafast all-optical fiber switch operating near 1.5-μm wavelength with more than 40 dB of small-signal gain. Switching is accomplished by seeding the modulation instability in one arm of a Mach–Zehnder interferometer, thus destroying its balance. Computer simulations, which include the effects of Raman self-frequency shifts, suggest that as much as 74% of the power input to the interferometer can be transferred to its (initially nulled) output arm when cw pumps are used. Even with an 80% loss at the output analyzer, we have gated 184 mW of power from a color-center laser using only 4.4 μW from a semiconductor laser.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
    [CrossRef] [PubMed]
  2. K. Tai, A. Tomita, J. L. Jewell, A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
    [CrossRef]
  3. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]

1986

K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

K. Tai, A. Tomita, J. L. Jewell, A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

J. P. Gordon, Opt. Lett. 11, 662 (1986).
[CrossRef] [PubMed]

Gordon, J. P.

Hasegawa, A.

K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

K. Tai, A. Tomita, J. L. Jewell, A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

Jewell, J. L.

K. Tai, A. Tomita, J. L. Jewell, A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

Tai, K.

K. Tai, A. Tomita, J. L. Jewell, A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Tomita, A.

K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

K. Tai, A. Tomita, J. L. Jewell, A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

Appl. Phys. Lett.

K. Tai, A. Tomita, J. L. Jewell, A. Hasegawa, Appl. Phys. Lett. 49, 236 (1986).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a), (b) Autocorrelations and (c), (d) spectra of modulation instability-based fiber interferometer switch output with and without SCL perturbation. The same scales are used for the two autocorrelations and the two spectra. (Pccl ~ 3.5 W in each arm, Pscl ~ 4.4 μW, f = 280 GHz; 600 m of fiber).

Fig. 2
Fig. 2

(a) Measured output power at SCL frequency versus SCL input power using a single-arm of the modulation instability-based fiber interferometer switch. The solid curve serves as a guide to the eye (Pccl ~5 W, f = 260 GHz; 600 m of fiber). (b) Calculated gain at SCL frequency versus fiber length averaged over a range of pump amplitudes ( 2 . 5 < A ccl < 3 . 53 ; Z 0 = π 2 Z c ).

Fig. 3
Fig. 3

Computer simulation of MI and the interferometer operation for cw pump and perturbation (Pccl = 3 W, Pscl = 58 μW, f = 280 GHz, and 600 m of fiber; normalizations are τc = 1.82 psec, Zc = 643 m, Accl = 3.122). (a) Fourier intensities at fundamental and first two upper and lower sidebands emerging from fiber with MI. (b) Net output energy from interferometer normalized to total input pump energy.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P ( ω 0 2 π f ) = P 0 { 1 + [ A 2 γ sinh ( γ l / Z c ) ] 2 } , γ = Ω [ A 2 ( Ω / 2 ) 2 ] 1 / 2 ,
i u z = 1 2 2 u t 2 + u ( | u | 2 t d | u | 2 t ) ,
u = A ccl + A scl exp ( i π t ) .

Metrics