Abstract

We demonstrate a modulation-instability-based fiber interferometer switch, an ultrafast all-optical fiber switch operating near 1.5-μm wavelength with more than 40 dB of small-signal gain. Switching is accomplished by seeding the modulation instability in one arm of a Mach–Zehnder interferometer, thus destroying its balance. Computer simulations, which include the effects of Raman self-frequency shifts, suggest that as much as 74% of the power input to the interferometer can be transferred to its (initially nulled) output arm when cw pumps are used. Even with an 80% loss at the output analyzer, we have gated 184 mW of power from a color-center laser using only 4.4 μW from a semiconductor laser.

© 1988 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber polarization-rotation switch based on modulation instability

C. E. Soccolich and M. N. Islam
Opt. Lett. 14(12) 645-647 (1989)

Fiber-based 1.5 μm lidar vibrometer in pulsed and continuous modes

Christopher A. Hill, Michael Harris, and Kevin D. Ridley
Appl. Opt. 46(20) 4376-4385 (2007)

Supercontinuum generation from ~1.9 to 4.5 μmin ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier

Ojas P. Kulkarni, Vinay V. Alexander, Malay Kumar, Michael J. Freeman, Mohammed N. Islam, Fred L. Terry, Jr., Manickam Neelakandan, and Allan Chan
J. Opt. Soc. Am. B 28(10) 2486-2498 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription