Abstract

An optical multichannel detection technique was used to measure simultaneously the time profiles of the input laser pulse and the elastic scattering, as well as the time profiles of the spectrally resolved multiorder stimulated Raman scattering (SRS), from single droplets. The time delay between the multiorder SRS and the input laser pulse is consistent with the generalized four-wave mixing process for first-order stimulated Raman growth, starting from spontaneous noise or the parametric signal. The presence of an internal plasma associated with laser-induced breakdown within a droplet quenches the SRS and increases the elastic scattering.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
    [CrossRef] [PubMed]
  2. S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, Science 231, 486 (1986).
    [CrossRef] [PubMed]
  3. S. C. Hill, R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1986).
    [CrossRef]
  4. P. Chýlek, J. D. Pendleton, R. G. Pinnick, Appl. Opt. 24, 3941 (1985).
    [CrossRef]
  5. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 1348 (1987).
    [CrossRef] [PubMed]
  6. T. Baer, Opt. Lett. 12, 392 (1987).
    [CrossRef] [PubMed]
  7. J.-Z. Zhang, D. H. Leach, R. K. Chang, Opt. Lett. 13, 270 (1988).
    [CrossRef] [PubMed]
  8. J. H. Eickmans, W.-F. Hsieh, R. K. Chang, Opt. Lett. 12, 22 (1987).
    [CrossRef] [PubMed]
  9. J. H. Eickmans, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 3721 (1987).
    [CrossRef] [PubMed]
  10. A. Biswas, H. Latifi, P. Shah, L. J. Radziemski, R. L. Armstrong, Opt. Lett. 12, 313 (1987).
    [CrossRef] [PubMed]
  11. J. B. Snow, S.-X. Qian, R. K. Chang, Opt. News 12(5), 5 (1986).
    [CrossRef]
  12. W.-F. Hsieh, J.-B. Zheng, C. F. Wood, B. T. Chu, R. K. Chang, Opt. Lett. 12, 576 (1987).
    [CrossRef] [PubMed]

1988 (1)

1987 (6)

1986 (3)

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. News 12(5), 5 (1986).
[CrossRef]

S. C. Hill, R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1986).
[CrossRef]

1985 (2)

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

P. Chýlek, J. D. Pendleton, R. G. Pinnick, Appl. Opt. 24, 3941 (1985).
[CrossRef]

Armstrong, R. L.

Baer, T.

Barber, P. W.

Benincasa, D. S.

Benner, R. E.

Biswas, A.

Chang, R. K.

Chu, B. T.

Chýlek, P.

P. Chýlek, J. D. Pendleton, R. G. Pinnick, Appl. Opt. 24, 3941 (1985).
[CrossRef]

Eickmans, J. H.

Hill, S. C.

Hsieh, W.-F.

Latifi, H.

Leach, D. H.

Pendleton, J. D.

P. Chýlek, J. D. Pendleton, R. G. Pinnick, Appl. Opt. 24, 3941 (1985).
[CrossRef]

Pinnick, R. G.

P. Chýlek, J. D. Pendleton, R. G. Pinnick, Appl. Opt. 24, 3941 (1985).
[CrossRef]

Qian, S.-X.

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. News 12(5), 5 (1986).
[CrossRef]

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

Radziemski, L. J.

Shah, P.

Snow, J. B.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. News 12(5), 5 (1986).
[CrossRef]

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

Tzeng, H.-M.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

Wood, C. F.

Zhang, J.-Z.

Zheng, J.-B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Simultaneously detected time profiles of the single input laser pulse and second-, third-, and fourth-order SRS (upper portion) and time profiles of the single input laser pulse, elastic scattering from the droplet, and first- and second-order SRS (lower portion). The streak-camera resolution is 400 psec. The water droplet (a ≈ 40 μm) containing 5 M NH4NO3 is irradiated by I0 = 0.8 GW/cm2.

Fig. 2
Fig. 2

Simultaneously detected time profiles of a single input laser (I0 = 0.8 GW/cm2) and first-, second-, and third-order SRS with the streak-camera resolution slowed down to 1 nsec (a). At higher input intensity (I0 = 5.2 GW/cm2) the simultaneously detected signals include the single input pulse, elastic scattering from the droplet and plasma, first-and second-order SRS, and the plasma continuum resulting from laser-induced breakdown inside the droplet (b). The streak-camera resolution is 1 nsec, and the water droplets (a ≈ 40 μm) contain 5 M NH4NO3.

Fig. 3
Fig. 3

Spatially resolved streak-camera output of the single input pulse, first-order SRS confined within the droplet rim (r/a = 1 and r/a = −1), and the plasma continuum. The plasma continuum, which is initiated within the shadow face of the droplet (r/a = 1), is subsequently ejected from the shadow face and propagates toward the illuminated face (r/a = −1). The laser direction is indicated. The ethanol droplet (labeled ETOH) is irradiated by I0 = 0.6 GW/cm2 , and the streak-camera resolution is 1 nsec.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ E s / δ r χ ( 3 ) E 0 E 0 * E s .
δ E 2 s / δ r χ ( 3 ) E s E s * E 2 s + χ ( 3 ) E 0 * E s E s exp ( i Δ k r ) ,

Metrics