Abstract

We have demonstrated a passive method for recovering an optical image that has been degraded by being passed through a thin phase-aberrating medium. This method relies on a point source situated near the object of interest to sample the aberration impressed upon the wave front. Degenerate four-wave mixing in fluorescein-doped boric acid glass was used to reconstruct the wave front.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik, Bell Syst. Tech. J. 44, 2451 (1965).
  2. B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, JETP Lett. 15, 109 (1972).
  3. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [CrossRef] [PubMed]
  4. J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
    [CrossRef]
  5. R. C. Lind, D. G. Steel, Opt. Lett. 6, 554 (1981).
    [CrossRef] [PubMed]
  6. J. Feinberg, R. W. Hellwarth, Opt. Lett. 5, 519 (1980); Opt. Lett. 6, 257 (1981).
    [CrossRef] [PubMed]
  7. M. D. Levenson, K. M. Johnson, V. C. Hanschett, K. Chiang, J. Opt. Soc. Am. 71, 737 (1981); M. D. Levenson, Opt. Lett. 5, 183 (1980).
    [CrossRef]
  8. M. C. Gower, in Annual Report to the Laser Facility Committee (Rutherford Appleton Laboratory, Chilton, UK, 1985).
  9. J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehman, Appl. Phys. Lett. 8, 311 (1966).
    [CrossRef]
  10. H. Kogelnik, K. S. Pennington, J. Opt. Soc. Am. 58, 273 (1968).
    [CrossRef]
  11. J. W. Goodman, D. W. Jackson, M. Lehmann, J. Knotts, Appl. Opt. 8, 1581 (1969).
    [CrossRef] [PubMed]
  12. V. V. Ivakhnik, V. M. Petnikova, V. S. Solomatin, M. A. Kharchenko, V. V. Shuvalov, Sov. J. Quantum Electron. 10, 514 (1980).
    [CrossRef]
  13. B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
    [CrossRef]
  14. T. R. O’Meara, Opt. Eng. 21, 231 (1982).
  15. A. Yariv, T. L. Koch. Opt. Lett. 7, 113 (1982).
    [CrossRef] [PubMed]
  16. J. Feinberg, Appl. Phys. Lett. 42, 30 (1983).
    [CrossRef]
  17. O. Ikeda, T. Suzuki, T. Sato, Appl. Opt. 22, 2192 (1983); O. Ikeda, T. Sato, M. Takehara, Appl. Opt. 22, 3562 (1983).
    [CrossRef] [PubMed]
  18. M. A. Kramer, W. R. Tompkin, R. W. Boyd, J. Lumin. 31/32, 789 (1984); Phys. Rev. A 34, 2026 (1986).
    [CrossRef] [PubMed]
  19. F. Roddier, in Progress in Optics, Vol. 19, E. Wolf, ed. (North-Holland, New York, 1981), p. 281, and references therein.
    [CrossRef]

1984 (1)

M. A. Kramer, W. R. Tompkin, R. W. Boyd, J. Lumin. 31/32, 789 (1984); Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

1983 (2)

1982 (4)

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

T. R. O’Meara, Opt. Eng. 21, 231 (1982).

A. Yariv, T. L. Koch. Opt. Lett. 7, 113 (1982).
[CrossRef] [PubMed]

J. Feinberg, Opt. Lett. 7, 486 (1982).
[CrossRef] [PubMed]

1981 (2)

1980 (2)

J. Feinberg, R. W. Hellwarth, Opt. Lett. 5, 519 (1980); Opt. Lett. 6, 257 (1981).
[CrossRef] [PubMed]

V. V. Ivakhnik, V. M. Petnikova, V. S. Solomatin, M. A. Kharchenko, V. V. Shuvalov, Sov. J. Quantum Electron. 10, 514 (1980).
[CrossRef]

1979 (1)

J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

1972 (1)

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, JETP Lett. 15, 109 (1972).

1969 (1)

1968 (1)

1966 (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehman, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

1965 (1)

H. Kogelnik, Bell Syst. Tech. J. 44, 2451 (1965).

AuYeung, J.

J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

Boyd, R. W.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, J. Lumin. 31/32, 789 (1984); Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Chiang, K.

Cronin-Golomb, M.

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

Faizullov, F. S.

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, JETP Lett. 15, 109 (1972).

Feinberg, J.

Fekete, D.

J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

Fischer, B.

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

Goodman, J. W.

J. W. Goodman, D. W. Jackson, M. Lehmann, J. Knotts, Appl. Opt. 8, 1581 (1969).
[CrossRef] [PubMed]

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehman, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Gower, M. C.

M. C. Gower, in Annual Report to the Laser Facility Committee (Rutherford Appleton Laboratory, Chilton, UK, 1985).

Hanschett, V. C.

Hellwarth, R. W.

Huntley, W. H.

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehman, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Ikeda, O.

Ivakhnik, V. V.

V. V. Ivakhnik, V. M. Petnikova, V. S. Solomatin, M. A. Kharchenko, V. V. Shuvalov, Sov. J. Quantum Electron. 10, 514 (1980).
[CrossRef]

Jackson, D. W.

J. W. Goodman, D. W. Jackson, M. Lehmann, J. Knotts, Appl. Opt. 8, 1581 (1969).
[CrossRef] [PubMed]

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehman, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Johnson, K. M.

Kharchenko, M. A.

V. V. Ivakhnik, V. M. Petnikova, V. S. Solomatin, M. A. Kharchenko, V. V. Shuvalov, Sov. J. Quantum Electron. 10, 514 (1980).
[CrossRef]

Knotts, J.

Koch, T. L.

Kogelnik, H.

H. Kogelnik, K. S. Pennington, J. Opt. Soc. Am. 58, 273 (1968).
[CrossRef]

H. Kogelnik, Bell Syst. Tech. J. 44, 2451 (1965).

Kramer, M. A.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, J. Lumin. 31/32, 789 (1984); Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Lehman, M.

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehman, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Lehmann, M.

Levenson, M. D.

Lind, R. C.

O’Meara, T. R.

T. R. O’Meara, Opt. Eng. 21, 231 (1982).

Pennington, K. S.

Pepper, D. M.

J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

Petnikova, V. M.

V. V. Ivakhnik, V. M. Petnikova, V. S. Solomatin, M. A. Kharchenko, V. V. Shuvalov, Sov. J. Quantum Electron. 10, 514 (1980).
[CrossRef]

Popovichev, V. I.

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, JETP Lett. 15, 109 (1972).

Ragul’skii, V. V.

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, JETP Lett. 15, 109 (1972).

Roddier, F.

F. Roddier, in Progress in Optics, Vol. 19, E. Wolf, ed. (North-Holland, New York, 1981), p. 281, and references therein.
[CrossRef]

Sato, T.

Shuvalov, V. V.

V. V. Ivakhnik, V. M. Petnikova, V. S. Solomatin, M. A. Kharchenko, V. V. Shuvalov, Sov. J. Quantum Electron. 10, 514 (1980).
[CrossRef]

Solomatin, V. S.

V. V. Ivakhnik, V. M. Petnikova, V. S. Solomatin, M. A. Kharchenko, V. V. Shuvalov, Sov. J. Quantum Electron. 10, 514 (1980).
[CrossRef]

Steel, D. G.

Suzuki, T.

Tompkin, W. R.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, J. Lumin. 31/32, 789 (1984); Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

White, J. O.

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

Yariv, A.

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

A. Yariv, T. L. Koch. Opt. Lett. 7, 113 (1982).
[CrossRef] [PubMed]

J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

Zel’dovich, B. Ya.

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, JETP Lett. 15, 109 (1972).

Appl. Opt. (2)

Appl. Phys. Lett. (3)

J. Feinberg, Appl. Phys. Lett. 42, 30 (1983).
[CrossRef]

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehman, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 44, 2451 (1965).

IEEE J. Quantum Electron. (1)

J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, IEEE J. Quantum Electron. QE-15, 1180 (1979).
[CrossRef]

J. Lumin. (1)

M. A. Kramer, W. R. Tompkin, R. W. Boyd, J. Lumin. 31/32, 789 (1984); Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

JETP Lett. (1)

B. Ya. Zel’dovich, V. I. Popovichev, V. V. Ragul’skii, F. S. Faizullov, JETP Lett. 15, 109 (1972).

Opt. Eng. (1)

T. R. O’Meara, Opt. Eng. 21, 231 (1982).

Opt. Lett. (4)

Sov. J. Quantum Electron. (1)

V. V. Ivakhnik, V. M. Petnikova, V. S. Solomatin, M. A. Kharchenko, V. V. Shuvalov, Sov. J. Quantum Electron. 10, 514 (1980).
[CrossRef]

Other (2)

F. Roddier, in Progress in Optics, Vol. 19, E. Wolf, ed. (North-Holland, New York, 1981), p. 281, and references therein.
[CrossRef]

M. C. Gower, in Annual Report to the Laser Facility Committee (Rutherford Appleton Laboratory, Chilton, UK, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic experimental arrangement for passive, one-way phase-aberration correction using four-wave mixing. Light from an extended object and a point source passes through an aberrator and is collected by an imaging system—in this case a lens of focal length f1. Field lenses of focal length f2 image the aberrator into the nonlinear material. The aberrated pump and probe waves interact with a plane-wave pump in the nonlinear material through the third-order susceptibility. The phase-conjugate signal so generated is free of the deleterious effects of the aberrating medium. A beam splitter projects the unaberrated image of the extended object into a camera.

Fig. 2
Fig. 2

Photographs demonstrating aberration correction using four-wave mixing. The input image (a) is severely aberrated (b) by a distorter placed at the entrance pupil of the optical imaging system. The restored image (c) is recovered on the far side of the aberrator from the original object. The quality of the recovered image is the same as that obtained by four-wave mixing with unaberrated input waves (d).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P NL { E 1 exp [ i ϕ ( x , y ) ] } E 2 { E 3 exp [ i ϕ ( x , y ) ] } * = E 1 E 2 E 3 * .

Metrics