Abstract

A quantitative discussion of the laser-heating-induced self-phase modulation in nematic liquid crystals is given. The process of the laser-heating-induced nematic–isotropic transition is analyzed. The intrinsic optical bistability due to the nematic–isotropic phase transition is observed and analyzed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).
  2. V. Volterra, E. Wiener-Avnear, Opt. Commun. 12, 194 (1974).
    [CrossRef]
  3. V. Volterra, E. Wiener-Avnear, Appl. Phys. 6, 257 (1975).
    [CrossRef]
  4. V. F. Kiteava, N. N. Sobolev, A. S. Zolot’ko, Mol. Cryst. Liq. Cryst. 91, 137 (1983).
    [CrossRef]
  5. M.-M. Cheung, S. D. Durbin, Y. R. Shen, Opt. Lett. 8, 39 (1983).
    [CrossRef] [PubMed]
  6. I. C. Khoo, Appl. Phys. Lett. 41, 909 (1982); I. C. Khoo, P. Y. Yan, T. H. Liu, S. Shepard, J. Y. Hou, Phys. Rev. A 29, 2756 (1984).
    [CrossRef]
  7. I. Janossy, M. R. Taghizadeh, E. Abraham, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds. (Springer-Verlag, Berlin, 1986).
  8. N. V. Tabiryan, B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 62, 237 (1980).
    [CrossRef]
  9. S. D. Durbin, S. M. Arakelian, Y. R. Shen, Opt. Lett. 6, 411 (1981).
    [PubMed]
  10. B. Bahadur, B. K. Sarna, V. G. Bhide, Mol. Cryst. Liq. Cryst. 72, 139 (1982).
    [CrossRef]
  11. I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, G. M. Finn, J. Opt. Soc. Am. B 4, 886 (1987).
    [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975), Chap. 8, p. 397.

1987

1983

M.-M. Cheung, S. D. Durbin, Y. R. Shen, Opt. Lett. 8, 39 (1983).
[CrossRef] [PubMed]

V. F. Kiteava, N. N. Sobolev, A. S. Zolot’ko, Mol. Cryst. Liq. Cryst. 91, 137 (1983).
[CrossRef]

1982

I. C. Khoo, Appl. Phys. Lett. 41, 909 (1982); I. C. Khoo, P. Y. Yan, T. H. Liu, S. Shepard, J. Y. Hou, Phys. Rev. A 29, 2756 (1984).
[CrossRef]

B. Bahadur, B. K. Sarna, V. G. Bhide, Mol. Cryst. Liq. Cryst. 72, 139 (1982).
[CrossRef]

1981

1980

N. V. Tabiryan, B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 62, 237 (1980).
[CrossRef]

1975

V. Volterra, E. Wiener-Avnear, Appl. Phys. 6, 257 (1975).
[CrossRef]

1974

V. Volterra, E. Wiener-Avnear, Opt. Commun. 12, 194 (1974).
[CrossRef]

Abraham, E.

I. Janossy, M. R. Taghizadeh, E. Abraham, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds. (Springer-Verlag, Berlin, 1986).

Arakelian, S. M.

Bahadur, B.

B. Bahadur, B. K. Sarna, V. G. Bhide, Mol. Cryst. Liq. Cryst. 72, 139 (1982).
[CrossRef]

Bhide, V. G.

B. Bahadur, B. K. Sarna, V. G. Bhide, Mol. Cryst. Liq. Cryst. 72, 139 (1982).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975), Chap. 8, p. 397.

Cheung, M.-M.

de Gennes, P. G.

P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).

Durbin, S. D.

Finn, G. M.

Hou, J. Y.

Janossy, I.

I. Janossy, M. R. Taghizadeh, E. Abraham, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds. (Springer-Verlag, Berlin, 1986).

Khoo, I. C.

I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, G. M. Finn, J. Opt. Soc. Am. B 4, 886 (1987).
[CrossRef]

I. C. Khoo, Appl. Phys. Lett. 41, 909 (1982); I. C. Khoo, P. Y. Yan, T. H. Liu, S. Shepard, J. Y. Hou, Phys. Rev. A 29, 2756 (1984).
[CrossRef]

Kiteava, V. F.

V. F. Kiteava, N. N. Sobolev, A. S. Zolot’ko, Mol. Cryst. Liq. Cryst. 91, 137 (1983).
[CrossRef]

Liu, T. H.

Michael, R. R.

Sarna, B. K.

B. Bahadur, B. K. Sarna, V. G. Bhide, Mol. Cryst. Liq. Cryst. 72, 139 (1982).
[CrossRef]

Shen, Y. R.

Sobolev, N. N.

V. F. Kiteava, N. N. Sobolev, A. S. Zolot’ko, Mol. Cryst. Liq. Cryst. 91, 137 (1983).
[CrossRef]

Tabiryan, N. V.

N. V. Tabiryan, B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 62, 237 (1980).
[CrossRef]

Taghizadeh, M. R.

I. Janossy, M. R. Taghizadeh, E. Abraham, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds. (Springer-Verlag, Berlin, 1986).

Volterra, V.

V. Volterra, E. Wiener-Avnear, Appl. Phys. 6, 257 (1975).
[CrossRef]

V. Volterra, E. Wiener-Avnear, Opt. Commun. 12, 194 (1974).
[CrossRef]

Wiener-Avnear, E.

V. Volterra, E. Wiener-Avnear, Appl. Phys. 6, 257 (1975).
[CrossRef]

V. Volterra, E. Wiener-Avnear, Opt. Commun. 12, 194 (1974).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975), Chap. 8, p. 397.

Yan, P. Y.

Zel’dovich, B. Ya.

N. V. Tabiryan, B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 62, 237 (1980).
[CrossRef]

Zolot’ko, A. S.

V. F. Kiteava, N. N. Sobolev, A. S. Zolot’ko, Mol. Cryst. Liq. Cryst. 91, 137 (1983).
[CrossRef]

Appl. Phys.

V. Volterra, E. Wiener-Avnear, Appl. Phys. 6, 257 (1975).
[CrossRef]

Appl. Phys. Lett.

I. C. Khoo, Appl. Phys. Lett. 41, 909 (1982); I. C. Khoo, P. Y. Yan, T. H. Liu, S. Shepard, J. Y. Hou, Phys. Rev. A 29, 2756 (1984).
[CrossRef]

J. Opt. Soc. Am. B

Mol. Cryst. Liq. Cryst.

N. V. Tabiryan, B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 62, 237 (1980).
[CrossRef]

B. Bahadur, B. K. Sarna, V. G. Bhide, Mol. Cryst. Liq. Cryst. 72, 139 (1982).
[CrossRef]

V. F. Kiteava, N. N. Sobolev, A. S. Zolot’ko, Mol. Cryst. Liq. Cryst. 91, 137 (1983).
[CrossRef]

Opt. Commun.

V. Volterra, E. Wiener-Avnear, Opt. Commun. 12, 194 (1974).
[CrossRef]

Opt. Lett.

Other

P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975), Chap. 8, p. 397.

I. Janossy, M. R. Taghizadeh, E. Abraham, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds. (Springer-Verlag, Berlin, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transverse distribution of the refractive indices in the liquid-crystal cell due to the laser-heating effect.

Fig. 2
Fig. 2

Self-phase modulation (a) for extraordinary light and (b) for ordinary light. A parallel cell was used.

Fig. 3
Fig. 3

Typical Fraunhofer diffraction pattern of the isotropic hole in a twisted cell.

Fig. 4
Fig. 4

Radius of the isotropic hole versus the input intensity. A parallel cell was used.

Fig. 5
Fig. 5

Plot of the discontinuous change and hysteresis of the temperature T0 versus the input intensity about the N–I phase transition point.

Fig. 6
Fig. 6

Experimental results of the discontinuous change and hysteresis of (a) the diffraction pattern and (b) the radius of the isotropic hole. The arrows indicate the changing direction of the intensity. A twisted cell was used.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = I 0 exp ( 2 r 2 / r 0 2 ) ,
T ( r ) = α I ( r ) + T 1 ,
T = T 0 exp ( 2 r 2 / r 0 2 ) ,
n i = A 0 + A 1 ( T c T ) + A 2 ( T c T ) 2 ,
n i = A 0 + A 1 [ T c T 0 exp ( 2 r 2 / r 0 2 ) ] + A 2 [ T c T 0 × exp ( 2 r 2 / r 0 2 ) ] 2 ,
2 r h 2 / r 0 2 = ln ( T 0 / T c ) .
2 r h 2 / r 0 2 = ln ( I / I c ) .
Δ θ = λ / 2 r h .
r h = λ / 2 Δ θ .
α = α 1 + ( α 2 α 1 ) H ( T 0 T c ) ,

Metrics