Abstract

Theoretical explanations of the kinetics of scalar and vector holographic gratings are developed, and experimental results are obtained in amorphous As2S3 thin films. The large nonlinear-optical susceptibilities are evaluated from experimental data in the vicinity of the fundamental absorption edge, and it is found that χ1111(3)3.2×102esu and χ1122(3)/χ1111(3)0.98.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Sh. D. Kakichashvili, Sov. J. Quantum Electron. 4, 795 (1974).
    [CrossRef]
  2. T. Todorov, L. Nikolova, K. Stoyanova, N. Tomova, Appl. Opt. 24, 785 (1985), and references therein.
    [CrossRef] [PubMed]
  3. H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
  4. J. H. Kwon, C. H. Kwak, S. S. Lee, Opt. Lett. 10, 568 (1985).
    [CrossRef] [PubMed]
  5. S. G. Lee, S. S. Lee, Appl. Opt. 25, 4512 (1986).
    [CrossRef] [PubMed]
  6. J. Tauc, in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, London, 1974), p. 159.
    [CrossRef]
  7. C. C. Wang, Phys. Rev. 152, 149 (1966).
    [CrossRef]
  8. C. H. Kwak, S. S. Lee, “Density matrix treatment of photodarkening kinetics in amorphous chalcogenide. As2S3 thin films,” Appl. Opt. (to be published); C. H. Kwak, S. G. Lee, S. S. Lee, in Proceedings of ICO-14 (International Commission for Optics, Quebec, Canada, 1987), p. 505.
  9. R. Magnusson, T. K. Gaylord, J. Opt. Soc. Am. 68, 809 (1978).
    [CrossRef]
  10. S. Saikan, J. Opt. Soc. Am. 68, 1184 (1978).
    [CrossRef]
  11. H. Nasu, J. D. Mackenzie, Opt. Eng. 26, 102 (1987).
  12. A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981).
    [CrossRef]

1987 (1)

H. Nasu, J. D. Mackenzie, Opt. Eng. 26, 102 (1987).

1986 (1)

1985 (2)

1981 (1)

A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981).
[CrossRef]

1978 (2)

1974 (1)

Sh. D. Kakichashvili, Sov. J. Quantum Electron. 4, 795 (1974).
[CrossRef]

1966 (1)

C. C. Wang, Phys. Rev. 152, 149 (1966).
[CrossRef]

Eichler, H. J.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

Gaylord, T. K.

Günter, P.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

Kakichashvili, Sh. D.

Sh. D. Kakichashvili, Sov. J. Quantum Electron. 4, 795 (1974).
[CrossRef]

Kwak, C. H.

J. H. Kwon, C. H. Kwak, S. S. Lee, Opt. Lett. 10, 568 (1985).
[CrossRef] [PubMed]

C. H. Kwak, S. S. Lee, “Density matrix treatment of photodarkening kinetics in amorphous chalcogenide. As2S3 thin films,” Appl. Opt. (to be published); C. H. Kwak, S. G. Lee, S. S. Lee, in Proceedings of ICO-14 (International Commission for Optics, Quebec, Canada, 1987), p. 505.

Kwon, J. H.

Lee, S. G.

Lee, S. S.

S. G. Lee, S. S. Lee, Appl. Opt. 25, 4512 (1986).
[CrossRef] [PubMed]

J. H. Kwon, C. H. Kwak, S. S. Lee, Opt. Lett. 10, 568 (1985).
[CrossRef] [PubMed]

C. H. Kwak, S. S. Lee, “Density matrix treatment of photodarkening kinetics in amorphous chalcogenide. As2S3 thin films,” Appl. Opt. (to be published); C. H. Kwak, S. G. Lee, S. S. Lee, in Proceedings of ICO-14 (International Commission for Optics, Quebec, Canada, 1987), p. 505.

Mackenzie, J. D.

H. Nasu, J. D. Mackenzie, Opt. Eng. 26, 102 (1987).

Magnusson, R.

Miller, A.

A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981).
[CrossRef]

Miller, D. A. B.

A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981).
[CrossRef]

Nasu, H.

H. Nasu, J. D. Mackenzie, Opt. Eng. 26, 102 (1987).

Nikolova, L.

Pohl, D. W.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

Saikan, S.

Smith, S. D.

A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981).
[CrossRef]

Stoyanova, K.

Tauc, J.

J. Tauc, in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, London, 1974), p. 159.
[CrossRef]

Todorov, T.

Tomova, N.

Wang, C. C.

C. C. Wang, Phys. Rev. 152, 149 (1966).
[CrossRef]

Adv. Phys. (1)

A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (2)

Opt. Eng. (1)

H. Nasu, J. D. Mackenzie, Opt. Eng. 26, 102 (1987).

Opt. Lett. (1)

Phys. Rev. (1)

C. C. Wang, Phys. Rev. 152, 149 (1966).
[CrossRef]

Sov. J. Quantum Electron. (1)

Sh. D. Kakichashvili, Sov. J. Quantum Electron. 4, 795 (1974).
[CrossRef]

Other (3)

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

C. H. Kwak, S. S. Lee, “Density matrix treatment of photodarkening kinetics in amorphous chalcogenide. As2S3 thin films,” Appl. Opt. (to be published); C. H. Kwak, S. G. Lee, S. S. Lee, in Proceedings of ICO-14 (International Commission for Optics, Quebec, Canada, 1987), p. 505.

J. Tauc, in Amorphous and Liquid Semiconductors, J. Tauc, ed. (Plenum, London, 1974), p. 159.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spatial modulations of polarization ellipse of Eq. (5): (A) intensity modulations for β = 0, (B) polarization modulations for β = π/2.

Fig. 2
Fig. 2

Temporal behaviors of diffraction intensities of holograms (βπ/2) recorded in an amorphous As2S3 thin film. The dashed lines represent the theory of Eq. (13) and the solid curves the experiment.

Fig. 3
Fig. 3

Temporal behaviors of diffracted intensities of vector (β = π/2) holograms in As2S3. The dashed curves represent the theory of Eq. (15) and the solid curves the experiment.

Fig. 4
Fig. 4

Higher-order diffracted waves of holograms recorded in As2S3: (a) scalar hologram (β = 0), (b) vector hologram (β = π/2).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E ( r , t ) = Re { [ A 1 ( r ) exp ( i k x sin θ ) + A 2 ( r ) × exp ( i k x sin θ ) ] exp ( i ω t ) } = Re { [ a ( r ) + i b ( r ) ] exp ( i ω t ) } ,
a ( r ) = 2 A 0 cos ( β / 2 ) cos δ x ˆ ,
b ( r ) = 2 A 0 sin ( β / 2 ) sin δ y ˆ ,
A 1 = A 0 [ cos ( β / 2 ) x ˆ + sin ( β / 2 ) y ˆ ] ,
A 2 = A 0 [ cos ( β / 2 ) x ˆ sin ( β / 2 ) y ˆ ] ,
E x 2 ( r , t ) a 2 ( r ) + E y 2 ( r , t ) b 2 ( r ) = 1 ,
I ( r ) = E x E x * + E y E y * = A 0 ( 1 + cos β cos 2 δ ) ,
P i ( 3 ) ( ω ) = 6 j = x , y [ χ 1122 ( 3 ) E j ( ω ) E j * ( ω ) E j ( ω ) + χ 1212 ( 3 ) E j ( ω ) E j * ( ω ) E j ( ω ) + χ 1221 ( 3 ) E j ( ω ) E i * ( ω ) E j ( ω ) ] ,
[ P x ( 3 ) ( ω ) P y ( 3 ) ( ω ) ] = [ 6 χ 1111 ( 3 ) a 2 + 6 χ 1122 ( 3 ) b 2 0 0 6 χ 1111 ( 3 ) b 2 + 6 χ 1122 ( 3 ) a 2 ] × [ E x ( ω ) E y ( ω ) ] = [ χ + 0 0 χ ] [ E x ( ω ) E y ( ω ) ] ,
χ ± = 6 A 0 2 ( [ χ 1111 ( 3 ) + χ 1122 ( 3 ) ] ± [ χ 1111 ( 3 ) χ 1122 ( 3 ) ] cos β + { [ χ 1111 ( 3 ) + χ 1122 ( 3 ) ] cos β ± [ χ 1111 ( 3 ) χ 1122 ( 3 ) ] } cos 2 δ ) .
χ 11 j j ( 3 ) ( I , t ) = { C 11 j j ( 3 ) ( ω ) / I s [ 1 + I ( r ) / I s ] } { 1 exp [ q I ( r ) t ] } ,
χ ± ( t ) 6 [ C 1111 ( 3 ) + C 1122 ( 3 ) ] { 1 exp [ q I ( r ) t ] } .
χ ± = 6 [ C 1111 ( 3 ) + C 1122 ( 3 ) ] j = 0 a j cos ( j K x ) ,
a 0 = 1 exp ( q A 0 2 t ) B 0 ( q A 0 2 t cos β ) ,
a j = ( 1 ) j + 1 2 exp ( q A 0 2 t ) B j ( q A 0 2 t cos β ) ( j = 1 , 2 , ) ,
d S 0 d z + ψ 0 S 0 + i d 2 cos θ C j S j = 0 ,
d S j d z + ψ 0 S j + i d 2 cos θ C j S 0 = 0 ,
η j ( t ) = exp [ 2 ψ 0 ( t ) d ] sin 2 [ C j ( t ) d / 2 cos θ ] .
χ ± = 6 { [ C 1111 ( 3 ) + C 1122 ( 3 ) ] ± [ C 1111 ( 3 ) C 1122 ( 3 ) ] × cos ( K x ) } [ A 0 2 / I s / ( 1 + A 0 2 / I s ) ] × [ 1 exp ( 2 q A 0 2 t ) ] ,
η 1 ( t ) = exp [ 2 ϕ 0 ( t ) d ] sin 2 [ D 1 ( t ) d / 2 cos θ ] ,

Metrics