Abstract

Theoretical and experimental analyses of color-image pattern recognition using a multiwavelength Fresnel holographic filter (FHF) are presented. The FHF technique permits a greatly relaxed spatial-filter alignment requirement, use of a white-light source, negligible color cross talk, and high diffraction efficiency of the spatial filter.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
    [CrossRef]
  2. H. K. Shi, Opt. Lett. 3, 85 (1978).
    [CrossRef] [PubMed]
  3. S. K. Case, Appl. Opt. 18, 1890 (1979).
    [CrossRef] [PubMed]
  4. Y. Ishii, K. Murata, Opt. Lett. 7, 230 (1982).
    [CrossRef] [PubMed]
  5. F. T. S. Yu et al., Appl. Phys. B 32, 1 (1983).
    [CrossRef]
  6. G. G. Mu et al., Optik 75, 97 (1987).
  7. A. B. Vander Lugt, Appl. Opt. 6, 1221 (1967).
    [CrossRef]

1987

G. G. Mu et al., Optik 75, 97 (1987).

1983

F. T. S. Yu et al., Appl. Phys. B 32, 1 (1983).
[CrossRef]

1982

1979

1978

1967

1964

A. B. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
[CrossRef]

Case, S. K.

Ishii, Y.

Mu, G. G.

G. G. Mu et al., Optik 75, 97 (1987).

Murata, K.

Shi, H. K.

Vander Lugt, A. B.

A. B. Vander Lugt, Appl. Opt. 6, 1221 (1967).
[CrossRef]

A. B. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
[CrossRef]

Yu, F. T. S.

F. T. S. Yu et al., Appl. Phys. B 32, 1 (1983).
[CrossRef]

Appl. Opt.

Appl. Phys. B

F. T. S. Yu et al., Appl. Phys. B 32, 1 (1983).
[CrossRef]

IEEE Trans. Inform. Theory

A. B. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
[CrossRef]

Opt. Lett.

Optik

G. G. Mu et al., Optik 75, 97 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic for recording a multiwavelength FHF.

Fig. 2
Fig. 2

Configuration for color-image correlation with a multiwavelength FHF.

Fig. 3
Fig. 3

Black-and-white pictures of the color reference objects: (a) a red rabbit, (b) a green rabbit.

Fig. 4
Fig. 4

Color input objects to be detected; the upper rabbit is green in color, and the lower rabbit is red.

Fig. 5
Fig. 5

Color-image correlation result with a multiwavelength FHF. The left-hand corner correlation peak occurs in red, and the right-hand corner correlation peak occurs in green.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

f 1 ( x , y ) = f 1 r ( x , y ) + f 1 g ( x , y ) + f 1 b ( x , y ) ,
O r ( u , υ ) = C 1 f 1 r ( x , y ) exp ( i k r y sin α r ) × exp { i k r 2 d [ ( u x ) 2 + ( υ y ) 2 ] } d x d y .
R r ( u , υ ) = C 2 exp { i k r 2 d [ ( u d sin θ ) 2 + υ 2 ] } ,
T r ( u , υ ) = O r * ( u , υ ) R r ( u , υ ) = C r exp { i k r 2 d [ ( u d sin θ ) 2 + υ 2 ] } × f 1 r * ( x , y ) exp ( i k r y sin α r ) × exp { i k r 2 d [ ( u x ) 2 + ( υ y ) 2 ] } d x d y .
T g ( u , υ ) = C g exp { i k g 2 d [ ( u d sin θ ) 2 + υ 2 ] } × f 1 g * ( x , y ) exp ( i k g y sin α g ) × exp { i k g 2 d [ ( u x ) 2 + ( υ y ) 2 ] } d x d y ,
T b ( u , υ ) = C b exp { i k b 2 d [ ( u d sin θ ) 2 + υ 2 ] } × f 1 b * ( x , y ) exp ( i k b y sin α b ) × exp { i k b 2 d [ ( u x ) 2 + ( υ y ) 2 ] } d x d y ,
H r ( x , y ; ξ , η ) = C r exp { i k r 2 d [ ( u x ) 2 + ( υ y ) 2 ] } × T r ( u , υ ) exp { i k r 2 d [ ( ξ u ) 2 + ( η υ ) 2 ] } d u d υ = C r exp [ i φ ( x , y ; ξ , η ) ] × f 1 r * ( x + ξ d sin θ , y + η ) .
H r i ( x , y ; ξ , η ) = | H r ( x , y ; ξ , η ) | 2 = | f 1 r ( x + ξ d sin θ , y + η ) | 2 ,
H g i ( x , y ; ξ , η ) = | f 1 g ( x + ξ d sin θ , y + η ) | 2 ,
H b i ( x , y ; ξ , η ) = | f 1 b ( x + ξ d sin θ , y + η ) | 2 .
H i ( x , y ; ξ , η ) = | f 1 r ( x + ξ d sin θ , y + η ) | 2 + | f 1 g ( x + ξ d sin θ , y + η ) | 2 + | f 1 b ( x + ξ d sin θ , y + η ) | 2 = I 1 ( x + ξ d sin θ , y + η ) .
I 2 ( x , y ) = | f 2 r ( x , y ) | 2 + | f 2 g ( x , y ) | 2 + | f 2 b ( x , y ) | 2 ,
I ( ξ , η ) = I 2 ( x , y ) I 1 ( x + ξ d sin θ , y + η ) d x d y .
d = λ g d λ r , d sin θ = d sin θ .
H g ( x , y ; ξ , η ) = exp { i k r 2 d [ ( u d sin θ ) 2 + υ 2 ] } × f 1 g * ( x , y ) exp ( i k r y sin α g ) × exp { i k r 2 d [ ( u x ) 2 + ( υ y ) 2 ] } × exp { i k g 2 d [ ( u x ) 2 + ( υ y ) 2 ] } × exp { i k g 2 d [ ( ξ u ) 2 + ( η υ ) 2 ] } × d x d y d u d υ .
| 1 λ λ + Δ λ | 0 . 5 % ,

Metrics