Abstract

Angled interfaces between Ti:LiNbO3 guided-wave devices and fiber-optic pigtails have been used to suppress backreflections. The effect of angled interfaces on coupling loss between polarization-maintaining fibers and Ti:LiNbO3 waveguides is investigated. The theory is developed and predicts very small increases in coupling loss for modest interface angles (10 deg). Experiments confirmed the theoretical coupling angles, and the added loss due to angling was measured to be 0.57 dB per interface. A Mach–Zehnder modulator was made, with optimized angled-interface geometry, which exhibited no additional insertion loss compared with that from similar devices with perpendicular interfaces.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Alferness, IEEE J. Quantum Electron. QE-17, 946 (1981).
    [CrossRef]
  2. R. A. Bergh, H. C. Lefevre, H. J. Shaw, IEEE J. Lightwave Technol. LT-2, 91 (1984).
    [CrossRef]
  3. N. K. Dutta, N. A. Olsson, K. Y. Liou, Electron. Lett. 20, 558 (1984).
    [CrossRef]
  4. G. Eisenstein, S. K. Korotky, L. W. Stulz, J. J. Veselka, R. M. Jopson, K. L. Hall, Electron. Lett. 21, 363 (1985).
    [CrossRef]
  5. H. C. Lefevre, J. P. Bettini, S. Vatoux, M. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” presented at the AGARD Conference on Guided Optical Structures in the Military Environment, Istanbul, Turkey, September 23–27, 1985.
  6. R. Ulrich, S. C. Rashleigh, Appl. Opt. 19, 2453 (1980).
    [CrossRef] [PubMed]
  7. O. G. Ramer, J. Opt. Commun. 2, 122 (1981).
    [CrossRef]
  8. W. K. Burns, G. B. Hocker, Appl. Opt. 16, 2048 (1977).
    [CrossRef] [PubMed]
  9. R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, IEEE J. Quantum Electron. QE-18, 1807 (1982).
    [CrossRef]
  10. R. Keil, F. Auracher, Opt. Commun. 30, 23 (1979).
    [CrossRef]
  11. L. McCaughn, E. J. Murphy, IEEE J. Quantum Electron. QE-19, 131 (1983).
    [CrossRef]
  12. M. Calzavara, G. Coppa, P. Di Vita, M. Potenza, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), paper WG-6.
  13. A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, New York, 1984), Chap. 2.
  14. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 15 and 20.
  15. K. S. Lee, F. S. Barnes, Appl. Opt. 26, 2294 (1987).
    [CrossRef] [PubMed]
  16. J. P. Taché, Appl. Opt. 26, 427 (1987).
    [CrossRef] [PubMed]
  17. M. Ohashi, K. Kitayama, S. Seikai, IEEE J. Lightwave Technol. LT-4, 109 (1986).
    [CrossRef]

1987 (2)

1986 (1)

M. Ohashi, K. Kitayama, S. Seikai, IEEE J. Lightwave Technol. LT-4, 109 (1986).
[CrossRef]

1985 (1)

G. Eisenstein, S. K. Korotky, L. W. Stulz, J. J. Veselka, R. M. Jopson, K. L. Hall, Electron. Lett. 21, 363 (1985).
[CrossRef]

1984 (2)

R. A. Bergh, H. C. Lefevre, H. J. Shaw, IEEE J. Lightwave Technol. LT-2, 91 (1984).
[CrossRef]

N. K. Dutta, N. A. Olsson, K. Y. Liou, Electron. Lett. 20, 558 (1984).
[CrossRef]

1983 (1)

L. McCaughn, E. J. Murphy, IEEE J. Quantum Electron. QE-19, 131 (1983).
[CrossRef]

1982 (1)

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, IEEE J. Quantum Electron. QE-18, 1807 (1982).
[CrossRef]

1981 (2)

O. G. Ramer, J. Opt. Commun. 2, 122 (1981).
[CrossRef]

R. C. Alferness, IEEE J. Quantum Electron. QE-17, 946 (1981).
[CrossRef]

1980 (1)

1979 (1)

R. Keil, F. Auracher, Opt. Commun. 30, 23 (1979).
[CrossRef]

1977 (1)

Alferness, R. C.

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, IEEE J. Quantum Electron. QE-18, 1807 (1982).
[CrossRef]

R. C. Alferness, IEEE J. Quantum Electron. QE-17, 946 (1981).
[CrossRef]

Auracher, F.

R. Keil, F. Auracher, Opt. Commun. 30, 23 (1979).
[CrossRef]

Barnes, F. S.

Bergh, R. A.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, IEEE J. Lightwave Technol. LT-2, 91 (1984).
[CrossRef]

Bettini, J. P.

H. C. Lefevre, J. P. Bettini, S. Vatoux, M. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” presented at the AGARD Conference on Guided Optical Structures in the Military Environment, Istanbul, Turkey, September 23–27, 1985.

Buhl, L. L.

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, IEEE J. Quantum Electron. QE-18, 1807 (1982).
[CrossRef]

Burns, W. K.

Calzavara, M.

M. Calzavara, G. Coppa, P. Di Vita, M. Potenza, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), paper WG-6.

Coppa, G.

M. Calzavara, G. Coppa, P. Di Vita, M. Potenza, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), paper WG-6.

Di Vita, P.

M. Calzavara, G. Coppa, P. Di Vita, M. Potenza, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), paper WG-6.

Divino, M. D.

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, IEEE J. Quantum Electron. QE-18, 1807 (1982).
[CrossRef]

Dutta, N. K.

N. K. Dutta, N. A. Olsson, K. Y. Liou, Electron. Lett. 20, 558 (1984).
[CrossRef]

Eisenstein, G.

G. Eisenstein, S. K. Korotky, L. W. Stulz, J. J. Veselka, R. M. Jopson, K. L. Hall, Electron. Lett. 21, 363 (1985).
[CrossRef]

Hall, K. L.

G. Eisenstein, S. K. Korotky, L. W. Stulz, J. J. Veselka, R. M. Jopson, K. L. Hall, Electron. Lett. 21, 363 (1985).
[CrossRef]

Hocker, G. B.

Jopson, R. M.

G. Eisenstein, S. K. Korotky, L. W. Stulz, J. J. Veselka, R. M. Jopson, K. L. Hall, Electron. Lett. 21, 363 (1985).
[CrossRef]

Keil, R.

R. Keil, F. Auracher, Opt. Commun. 30, 23 (1979).
[CrossRef]

Kitayama, K.

M. Ohashi, K. Kitayama, S. Seikai, IEEE J. Lightwave Technol. LT-4, 109 (1986).
[CrossRef]

Korotky, S. K.

G. Eisenstein, S. K. Korotky, L. W. Stulz, J. J. Veselka, R. M. Jopson, K. L. Hall, Electron. Lett. 21, 363 (1985).
[CrossRef]

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, IEEE J. Quantum Electron. QE-18, 1807 (1982).
[CrossRef]

Lee, K. S.

Lefevre, H. C.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, IEEE J. Lightwave Technol. LT-2, 91 (1984).
[CrossRef]

H. C. Lefevre, J. P. Bettini, S. Vatoux, M. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” presented at the AGARD Conference on Guided Optical Structures in the Military Environment, Istanbul, Turkey, September 23–27, 1985.

Liou, K. Y.

N. K. Dutta, N. A. Olsson, K. Y. Liou, Electron. Lett. 20, 558 (1984).
[CrossRef]

McCaughn, L.

L. McCaughn, E. J. Murphy, IEEE J. Quantum Electron. QE-19, 131 (1983).
[CrossRef]

Murphy, E. J.

L. McCaughn, E. J. Murphy, IEEE J. Quantum Electron. QE-19, 131 (1983).
[CrossRef]

Ohashi, M.

M. Ohashi, K. Kitayama, S. Seikai, IEEE J. Lightwave Technol. LT-4, 109 (1986).
[CrossRef]

Olsson, N. A.

N. K. Dutta, N. A. Olsson, K. Y. Liou, Electron. Lett. 20, 558 (1984).
[CrossRef]

Papuchon, M.

H. C. Lefevre, J. P. Bettini, S. Vatoux, M. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” presented at the AGARD Conference on Guided Optical Structures in the Military Environment, Istanbul, Turkey, September 23–27, 1985.

Potenza, M.

M. Calzavara, G. Coppa, P. Di Vita, M. Potenza, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), paper WG-6.

Ramaswamy, V. R.

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, IEEE J. Quantum Electron. QE-18, 1807 (1982).
[CrossRef]

Ramer, O. G.

O. G. Ramer, J. Opt. Commun. 2, 122 (1981).
[CrossRef]

Rashleigh, S. C.

Seikai, S.

M. Ohashi, K. Kitayama, S. Seikai, IEEE J. Lightwave Technol. LT-4, 109 (1986).
[CrossRef]

Shaw, H. J.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, IEEE J. Lightwave Technol. LT-2, 91 (1984).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 15 and 20.

Stulz, L. W.

G. Eisenstein, S. K. Korotky, L. W. Stulz, J. J. Veselka, R. M. Jopson, K. L. Hall, Electron. Lett. 21, 363 (1985).
[CrossRef]

Taché, J. P.

Ulrich, R.

Vatoux, S.

H. C. Lefevre, J. P. Bettini, S. Vatoux, M. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” presented at the AGARD Conference on Guided Optical Structures in the Military Environment, Istanbul, Turkey, September 23–27, 1985.

Veselka, J. J.

G. Eisenstein, S. K. Korotky, L. W. Stulz, J. J. Veselka, R. M. Jopson, K. L. Hall, Electron. Lett. 21, 363 (1985).
[CrossRef]

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, New York, 1984), Chap. 2.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, New York, 1984), Chap. 2.

Appl. Opt. (4)

Electron. Lett. (2)

N. K. Dutta, N. A. Olsson, K. Y. Liou, Electron. Lett. 20, 558 (1984).
[CrossRef]

G. Eisenstein, S. K. Korotky, L. W. Stulz, J. J. Veselka, R. M. Jopson, K. L. Hall, Electron. Lett. 21, 363 (1985).
[CrossRef]

IEEE J. Lightwave Technol. (2)

R. A. Bergh, H. C. Lefevre, H. J. Shaw, IEEE J. Lightwave Technol. LT-2, 91 (1984).
[CrossRef]

M. Ohashi, K. Kitayama, S. Seikai, IEEE J. Lightwave Technol. LT-4, 109 (1986).
[CrossRef]

IEEE J. Quantum Electron. (3)

L. McCaughn, E. J. Murphy, IEEE J. Quantum Electron. QE-19, 131 (1983).
[CrossRef]

R. C. Alferness, IEEE J. Quantum Electron. QE-17, 946 (1981).
[CrossRef]

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, IEEE J. Quantum Electron. QE-18, 1807 (1982).
[CrossRef]

J. Opt. Commun. (1)

O. G. Ramer, J. Opt. Commun. 2, 122 (1981).
[CrossRef]

Opt. Commun. (1)

R. Keil, F. Auracher, Opt. Commun. 30, 23 (1979).
[CrossRef]

Other (4)

H. C. Lefevre, J. P. Bettini, S. Vatoux, M. Papuchon, “Progress in optical fiber gyroscopes using integrated optics,” presented at the AGARD Conference on Guided Optical Structures in the Military Environment, Istanbul, Turkey, September 23–27, 1985.

M. Calzavara, G. Coppa, P. Di Vita, M. Potenza, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), paper WG-6.

A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, New York, 1984), Chap. 2.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 15 and 20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Angled-interface coupling geometry. (a) Top view for angling in the plane of the WG; (b) side view for angling perpendicular to the plane of the WG; (c) WG mode-spot geometry. Angles are defined in the text.

Fig. 2
Fig. 2

Theoretical coupling efficiency, K, versus Wx/Ax with Wy/Ay as a parameter.

Fig. 3
Fig. 3

ABCD angled-interface geometry.

Fig. 4
Fig. 4

Experimental coupling loss (normalized) versus angle, θf. Squares are actual data. The solid curve is theory. Unity transmission corresponds to 4.1-dB fiber-to-fiber insertion loss.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

K = 4 ( W x A x + A x W x ) ( W y A y + A y W y ) ,
q 2 = A q 1 + B C q 1 + D ,
M y M t = [ cos θ 2 cos θ 1 0 0 n 1 cos θ 1 n 2 cos θ 2 ] ,
M x M s = [ 1 0 0 n 1 n 2 ] ,
1 q ( z ) = 1 R ( z ) j λ π W 2 ( z ) ,
q 2 = A q 1 / D ,
W y 2 = cos θ 2 cos θ 1 W y 1 ( tangential ) ,
W x 2 = W x 1 ( sagittal ) .

Metrics