Abstract

We show that an electronic servo loop can be closed stably and accurately on a fiber-optic gyroscope by using the phase-modulation technique. Using a closed-loop fiber-optic gyroscope with gated two-harmonic phase modulation, an experiment on the linearity was performed; a linearity of approximately 0.5% was achieved below 90°/sec. The parameter dependencies of the linearity are discussed and theoretical and experimental results given.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cahill, E. Udd, Opt. Lett. 4, 93 (1979).
    [CrossRef] [PubMed]
  2. A. Ebberg, G. Schiffner, Opt. Lett. 10, 300 (1985).
    [CrossRef] [PubMed]
  3. B. Y. Kim, H. J. Shaw, Opt. Lett. 9, 375 (1984).
    [CrossRef] [PubMed]
  4. R. Ulrich, Opt. Lett. 5, 173 (1980).
    [CrossRef] [PubMed]
  5. R. A. Bergh, H. C. Lefevre, H. J. Shaw, Opt. Lett. 6, 198 (1981).
    [CrossRef] [PubMed]
  6. J. P. Dakin, C. A. Wade, C. Haji-Michael, Proc. Inst. Electr. Eng. Part J 132, 287 (1985).

1985 (2)

J. P. Dakin, C. A. Wade, C. Haji-Michael, Proc. Inst. Electr. Eng. Part J 132, 287 (1985).

A. Ebberg, G. Schiffner, Opt. Lett. 10, 300 (1985).
[CrossRef] [PubMed]

1984 (1)

1981 (1)

1980 (1)

1979 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Closed-loop fiber-optic gyroscope with gated two-harmonic phase modulation.

Fig. 2
Fig. 2

Frequency response of the PZT.

Fig. 3
Fig. 3

Gyro output for input rotation rates: (a) within 90°/sec, (b) within ±0.2°/sec. Conversion factors: (a) 17.3°/sec/V, (b) 0.0286°/sec/V.

Fig. 4
Fig. 4

Linearity of the scale factor due to relative amplitude and relative phase angle in two-harmonic modulation.

Fig. 5
Fig. 5

Linearity of the scale factor due to the amount of duty cycle and duty shift angle.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ m ( t ) = ϕ m ( t + T / 2 ) ϕ m ( t T / 2 ) = ϕ 0 ( cos ω m t 2 B cos 2 ω m t ) ,
I b J 1 ( η b ) sin [ Δ ϕ m ( t ) ϕ s ] .
τ / 2 + τ / 2 sin [ Δ ϕ m ( t ) ϕ s ] d t = 0 .
Linearity = 2 ( S max S min ) / ( S max + S min ) .

Metrics