Abstract

A novel piezoelectrically driven optical-fiber phase modulator is described. The modulator has low thermal drift and minimum polarization modulation and is immune to variations in the characteristics of the piezoelectric transducer. The theoretical model of the modulator accurately predicts the experimental performance, showing a phase-modulation enhancement over a wraparound fiber modulator at resonance.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. N. Davies, S. A. Kingsley, Electron. Lett. 10, 21 (1974).
    [CrossRef]
  2. D. Kreit, R. C. Youngquist, I. P. Giles, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 381 (1987).
  3. M. N. Zervas, R. C. Youngquist, in Technical Digest of 4th International Conference on Optical Fibre Sensors (Institute of Electronics and Communication Engineers, Tokyo, 1986), paper P19.
  4. L. S. D. Morley, Quant. J. Mech. Appl. Math. 14, 155 (1961).
    [CrossRef]
  5. K. F. Graff, Int. J. Mech. Sci. 13, 107 (1971).
    [CrossRef]

1987 (1)

D. Kreit, R. C. Youngquist, I. P. Giles, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 381 (1987).

1974 (1)

D. E. N. Davies, S. A. Kingsley, Electron. Lett. 10, 21 (1974).
[CrossRef]

1971 (1)

K. F. Graff, Int. J. Mech. Sci. 13, 107 (1971).
[CrossRef]

1961 (1)

L. S. D. Morley, Quant. J. Mech. Appl. Math. 14, 155 (1961).
[CrossRef]

Davies, D. E. N.

D. E. N. Davies, S. A. Kingsley, Electron. Lett. 10, 21 (1974).
[CrossRef]

Giles, I. P.

D. Kreit, R. C. Youngquist, I. P. Giles, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 381 (1987).

Graff, K. F.

K. F. Graff, Int. J. Mech. Sci. 13, 107 (1971).
[CrossRef]

Kingsley, S. A.

D. E. N. Davies, S. A. Kingsley, Electron. Lett. 10, 21 (1974).
[CrossRef]

Kreit, D.

D. Kreit, R. C. Youngquist, I. P. Giles, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 381 (1987).

Morley, L. S. D.

L. S. D. Morley, Quant. J. Mech. Appl. Math. 14, 155 (1961).
[CrossRef]

Youngquist, R. C.

D. Kreit, R. C. Youngquist, I. P. Giles, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 381 (1987).

M. N. Zervas, R. C. Youngquist, in Technical Digest of 4th International Conference on Optical Fibre Sensors (Institute of Electronics and Communication Engineers, Tokyo, 1986), paper P19.

Zervas, M. N.

M. N. Zervas, R. C. Youngquist, in Technical Digest of 4th International Conference on Optical Fibre Sensors (Institute of Electronics and Communication Engineers, Tokyo, 1986), paper P19.

Electron. Lett. (1)

D. E. N. Davies, S. A. Kingsley, Electron. Lett. 10, 21 (1974).
[CrossRef]

Int. J. Mech. Sci. (1)

K. F. Graff, Int. J. Mech. Sci. 13, 107 (1971).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

D. Kreit, R. C. Youngquist, I. P. Giles, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 381 (1987).

Quant. J. Mech. Appl. Math. (1)

L. S. D. Morley, Quant. J. Mech. Appl. Math. 14, 155 (1961).
[CrossRef]

Other (1)

M. N. Zervas, R. C. Youngquist, in Technical Digest of 4th International Conference on Optical Fibre Sensors (Institute of Electronics and Communication Engineers, Tokyo, 1986), paper P19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fiber-loop phase-modulator configuration.

Fig. 2
Fig. 2

Amplitude of induced phase modulation versus driving frequency. Solid line, fiber-loop modulator: L = 19 cm; voltage amplitude 20 V. Dashed line, fiber simply attached to the transducer PZT-5H plate (2.5 cm × 2.5 cm); voltage amplitude 20 V.

Fig. 3
Fig. 3

Amplitude of induced phase modulation versus amplitude of driving voltage: L = 19 cm; frequency 22.2 kHz.

Fig. 4
Fig. 4

Resonance frequency of phase modulator versus fiber-loop length L. Solid line, theory; dots, experimental results.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( s ) = 0 cos k ( s L 2 ) cos k L 2 ,
k = k i α ,
d ϕ ( s ) = β { 1 n 2 2 [ p 12 ( p 11 + p 12 ) ν ] } ( s ) d s ,
| Δ ϕ | = 2 β { 1 n 2 2 [ p 12 ( p 11 + p 12 ) ν ] } 0 F ( k ) ,
F ( k ) = ( k 2 + α 2 ) 1 / 2 [ cosh ( α L ) cos ( k L ) cosh ( α L ) + cos ( k L ) ] 1 / 2 .
f R = c 0 / 2 L .

Metrics