Abstract

The behavior of the first-order diffracted beam of an acousto-optic modulator is investigated under rotation of the acousto-optic crystal about an axis perpendicular to the plane of the incident and diffracted beams. It is found that the diffraction efficiency as a function of this rotation is not symmetric about the Bragg angle of incidence. A unidirectional device for a ring dye laser that uses this effect is demonstrated.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Nussbaum, R. A. Phillips, Contemporary Optics for Scientists and Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1976), Sec. 14-9.
  2. N. M. Lawandy, R. S. Afzsl, IEEE J. Quantum Electron. QE-16, 483 (1980).
  3. R. Roy, P. A. Schulz, A. Walther, Opt. Lett. 12, 672 (1987).
    [CrossRef] [PubMed]
  4. A. Korpel, Proc. IEEE 69, 48 (1981).
    [CrossRef]
  5. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley-Interscience, New York, 1984), Sec. 9.6.
  6. F. W. Freyre, Appl. Opt. 20, 3897 (1981).
    [CrossRef]
  7. N. Uchida, N. Nüzeki, Proc. IEEE 61, 1073 (1973).
    [CrossRef]
  8. F. V. Kowalski, J. A. Squier, J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
    [CrossRef]
  9. L. Hess, U.S. Patent Number4,586,184 (April29, 1986).

1987

F. V. Kowalski, J. A. Squier, J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

R. Roy, P. A. Schulz, A. Walther, Opt. Lett. 12, 672 (1987).
[CrossRef] [PubMed]

1981

A. Korpel, Proc. IEEE 69, 48 (1981).
[CrossRef]

F. W. Freyre, Appl. Opt. 20, 3897 (1981).
[CrossRef]

1980

N. M. Lawandy, R. S. Afzsl, IEEE J. Quantum Electron. QE-16, 483 (1980).

1973

N. Uchida, N. Nüzeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

Afzsl, R. S.

N. M. Lawandy, R. S. Afzsl, IEEE J. Quantum Electron. QE-16, 483 (1980).

Freyre, F. W.

F. W. Freyre, Appl. Opt. 20, 3897 (1981).
[CrossRef]

Hess, L.

L. Hess, U.S. Patent Number4,586,184 (April29, 1986).

Korpel, A.

A. Korpel, Proc. IEEE 69, 48 (1981).
[CrossRef]

Kowalski, F. V.

F. V. Kowalski, J. A. Squier, J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, R. S. Afzsl, IEEE J. Quantum Electron. QE-16, 483 (1980).

Nussbaum, A.

A. Nussbaum, R. A. Phillips, Contemporary Optics for Scientists and Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1976), Sec. 14-9.

Nüzeki, N.

N. Uchida, N. Nüzeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

Phillips, R. A.

A. Nussbaum, R. A. Phillips, Contemporary Optics for Scientists and Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1976), Sec. 14-9.

Pinckney, J. T.

F. V. Kowalski, J. A. Squier, J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

Roy, R.

Schulz, P. A.

Squier, J. A.

F. V. Kowalski, J. A. Squier, J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

Uchida, N.

N. Uchida, N. Nüzeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

Walther, A.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley-Interscience, New York, 1984), Sec. 9.6.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley-Interscience, New York, 1984), Sec. 9.6.

Appl. Opt.

F. W. Freyre, Appl. Opt. 20, 3897 (1981).
[CrossRef]

Appl. Phys. Lett.

F. V. Kowalski, J. A. Squier, J. T. Pinckney, Appl. Phys. Lett. 50, 711 (1987).
[CrossRef]

IEEE J. Quantum Electron.

N. M. Lawandy, R. S. Afzsl, IEEE J. Quantum Electron. QE-16, 483 (1980).

Opt. Lett.

Proc. IEEE

N. Uchida, N. Nüzeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

A. Korpel, Proc. IEEE 69, 48 (1981).
[CrossRef]

Other

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley-Interscience, New York, 1984), Sec. 9.6.

L. Hess, U.S. Patent Number4,586,184 (April29, 1986).

A. Nussbaum, R. A. Phillips, Contemporary Optics for Scientists and Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1976), Sec. 14-9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of first-order Bragg diffraction from an AOM. The dashed line represents the sound-wave front. The solid line represents the sound-wave front after rotation of the crystal by Δθ. The arrowed line represents the light beam.

Fig. 2
Fig. 2

Intensity of the first-order diffracted beam (in arbitrary units) versus angular deviation from the Bragg angle for the Crystal Technology Model 3500-S AOM.

Fig. 3
Fig. 3

Intensity of the first-order diffracted beam (in milliwatts) versus angular deviation from the Bragg angle for the IntraAction Model ADM-70 AOM.

Fig. 4
Fig. 4

Intensity of the first-order diffracted beam (in milliwatts) versus angular deviation from the Bragg angle for the Isomet Model 1211 AOM.

Fig. 5
Fig. 5

Schematic of laser used to demonstrate unidirectional device: M1–M4, mirrors; DJ, dye jet; AC, astigmatism compensator.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K s = 2 k sin θ B ,
k i ( θ B + Δ θ ) + k d ( θ B Δ θ ) = K s
k i θ B + k d θ B = K s + ( k d k i ) Δ θ K s ,

Metrics