Abstract

Saturation of the pump-band absorption in Ti:sapphire has been observed by using 10-nsec, π-polarized pulses of 532 nm with fluences up to 4 J/cm2. A Frantz–Nodvik method was used for fitting the data and determining the saturation fluence (7.6 J/cm2) and the absorption cross section (4.9 × 10−20 cm2) at 532 nm. The peak absorption cross section was calculated to be 6.4 × 10−20 cm2 at 490 nm. This value is in reasonably good agreement with other determination methods.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Moulton, Opt. News 8(6), 9 (1982).
    [CrossRef]
  2. P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).
    [CrossRef]
  3. L. M. Frantz, J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
    [CrossRef]
  4. K. Nassau, Gems Gemol. 17, 121 (1981); R. Roy, W. White, J. Crystal Growth 13, 78 (1972).
    [CrossRef]
  5. L. Huff, L. G. DeShazer, J. Opt. Soc. Am. 60, 157 (1970).
    [CrossRef]
  6. S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, R. R. Alfano, Appl. Phys. Lett. 50, 1494 (1987).
    [CrossRef]
  7. A. J. Strauss, R. E. Fahey, A. Sanchez, R. L. Aggarwal, in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 681, 62 (1986).
  8. Electronics Division, Union Carbide Corporation, 9320 Chesapeake Drive, San Diego, California 92123.
  9. Crystal Systems, Inc., Shetland Industrial Park, 35 Congress Street, Salem, Massachusetts 01970.
  10. R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, Appl. Phys. Lett. 48, 1345 (1986).
    [CrossRef]

1987 (1)

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, R. R. Alfano, Appl. Phys. Lett. 50, 1494 (1987).
[CrossRef]

1986 (3)

A. J. Strauss, R. E. Fahey, A. Sanchez, R. L. Aggarwal, in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 681, 62 (1986).

R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, Appl. Phys. Lett. 48, 1345 (1986).
[CrossRef]

P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).
[CrossRef]

1982 (1)

P. F. Moulton, Opt. News 8(6), 9 (1982).
[CrossRef]

1981 (1)

K. Nassau, Gems Gemol. 17, 121 (1981); R. Roy, W. White, J. Crystal Growth 13, 78 (1972).
[CrossRef]

1970 (1)

1963 (1)

L. M. Frantz, J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Aggarwal, R. L.

A. J. Strauss, R. E. Fahey, A. Sanchez, R. L. Aggarwal, in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 681, 62 (1986).

R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, Appl. Phys. Lett. 48, 1345 (1986).
[CrossRef]

Alfano, R. R.

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, R. R. Alfano, Appl. Phys. Lett. 50, 1494 (1987).
[CrossRef]

DeShazer, L. G.

Fahey, R. E.

A. J. Strauss, R. E. Fahey, A. Sanchez, R. L. Aggarwal, in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 681, 62 (1986).

R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, Appl. Phys. Lett. 48, 1345 (1986).
[CrossRef]

Frantz, L. M.

L. M. Frantz, J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Gayen, S. K.

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, R. R. Alfano, Appl. Phys. Lett. 50, 1494 (1987).
[CrossRef]

Huff, L.

Moulton, P. F.

Nassau, K.

K. Nassau, Gems Gemol. 17, 121 (1981); R. Roy, W. White, J. Crystal Growth 13, 78 (1972).
[CrossRef]

Nodvik, J. S.

L. M. Frantz, J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Petricevic, V.

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, R. R. Alfano, Appl. Phys. Lett. 50, 1494 (1987).
[CrossRef]

Sanchez, A.

A. J. Strauss, R. E. Fahey, A. Sanchez, R. L. Aggarwal, in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 681, 62 (1986).

R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, Appl. Phys. Lett. 48, 1345 (1986).
[CrossRef]

Strauss, A. J.

A. J. Strauss, R. E. Fahey, A. Sanchez, R. L. Aggarwal, in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 681, 62 (1986).

R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, Appl. Phys. Lett. 48, 1345 (1986).
[CrossRef]

Wang, W. B.

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, R. R. Alfano, Appl. Phys. Lett. 50, 1494 (1987).
[CrossRef]

Yoo, K. M.

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, R. R. Alfano, Appl. Phys. Lett. 50, 1494 (1987).
[CrossRef]

Appl. Phys. Lett. (2)

S. K. Gayen, W. B. Wang, V. Petricevic, K. M. Yoo, R. R. Alfano, Appl. Phys. Lett. 50, 1494 (1987).
[CrossRef]

R. L. Aggarwal, A. Sanchez, R. E. Fahey, A. J. Strauss, Appl. Phys. Lett. 48, 1345 (1986).
[CrossRef]

Gems Gemol. (1)

K. Nassau, Gems Gemol. 17, 121 (1981); R. Roy, W. White, J. Crystal Growth 13, 78 (1972).
[CrossRef]

J. Appl. Phys. (1)

L. M. Frantz, J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. News (1)

P. F. Moulton, Opt. News 8(6), 9 (1982).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. J. Strauss, R. E. Fahey, A. Sanchez, R. L. Aggarwal, in Laser and Nonlinear Optical Materials, L. G. DeShazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 681, 62 (1986).

Other (2)

Electronics Division, Union Carbide Corporation, 9320 Chesapeake Drive, San Diego, California 92123.

Crystal Systems, Inc., Shetland Industrial Park, 35 Congress Street, Salem, Massachusetts 01970.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration diagram for Ti3+ in sapphire, showing the excitation process followed by phonon-assisted relaxation of the metastable excited state. The dashed line represents emission in the near infared.

Fig. 2
Fig. 2

Level configuration for derivation of the Frantz–Nodvik equation for (a) absorption saturation and (b) gain saturation.

Fig. 3
Fig. 3

Example of transmission versus pump energy fluence for the Frantz–Nodvik model of absorption in a four-level system with a metastable upper state.

Fig. 4
Fig. 4

Data for 532-nm transmission through a 2.134-cm-long Ti:sapphire crystal versus 532-nm fluence. The solid curve is a fit to the data with the Frantz–Nodvik equation; the dashed line is a straight line that matches the slope and transmission of the Frantz–Nodvik equation as the input fluence approaches zero.

Tables (1)

Tables Icon

Table 1 Crystal Characteristics and Fitting Parametersa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d N 1 d t = σ h v I N 1 , d N 3 d t = σ h v I N 1 , d I d z = N 1 σ I ,
d N 1 d t = σ h v I N 1 , d N 3 d t = σ h v I N 1 , d I d z = N 1 σ I .
E out = E sat ln { 1 + [ exp ( E in E sat ) 1 ] exp ( E stored E sat ) } ,
E stored = N c h ν L ,
d T d E in = T 0 ( 1 T 0 ) 2 E sat ,

Metrics