Abstract

We have demonstrated a self-locking power-buildup cavity for laser diodes. This device requires only a few simple optical elements and can provide a standing wave containing as much as 1000 times the power emitted by the laser diode. With this device we have obtained an intense standing wave of tunable light that was used to collimate a cesium atomic beam. We have studied the power and frequency dependence of the beam collimation.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. N. Watts, C. E. Wieman, Opt. Lett. 11, 291 (1986).
    [CrossRef] [PubMed]
  2. D. Sesko, C. G. Fan, C. E. Wieman, “Production of a cold atomic vapor using diode-laser cooling,” J. Opt. Soc. Am. B (to be published).
  3. A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, C. Cohen-Tannoudji, Phys. Rev. Lett. 57, 1688 (1986).
    [CrossRef] [PubMed]
  4. C. Salamon, J. Dalibard, A. Aspect, H. Metcalf, C. Cohen-Tannoudji, Phys. Rev. Lett. 59, 1659 (1987).
    [CrossRef]
  5. B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987).
    [CrossRef] [PubMed]
  6. For a discussion of birefringence in mirror coatings see S. L. Gilbert, C. E. Wieman, Phys. Rev. A 34, 792 (1986), and reference therein.
    [CrossRef] [PubMed]
  7. J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985); A. P. Kazantsev, Zh. Eksp. Teor. Fiz. 66, 1599 (1974); V. G. Minogin, O. T. Serimaa, Opt. Commun. 30, 373 (1979); J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980), A. P. Kazantsev, V. S. Smirnov, G. I. Surdutovich, D. O. Chudesnikov, V. P. Yakovlev, J. Opt. Soc. Am. B 2, 11731 (1985).
    [CrossRef]
  8. V. I. Balykin, A. I. Sidorov, Appl. Phys. B 42, 51 (1987).
    [CrossRef]

1987

C. Salamon, J. Dalibard, A. Aspect, H. Metcalf, C. Cohen-Tannoudji, Phys. Rev. Lett. 59, 1659 (1987).
[CrossRef]

V. I. Balykin, A. I. Sidorov, Appl. Phys. B 42, 51 (1987).
[CrossRef]

B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987).
[CrossRef] [PubMed]

1986

A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, C. Cohen-Tannoudji, Phys. Rev. Lett. 57, 1688 (1986).
[CrossRef] [PubMed]

R. N. Watts, C. E. Wieman, Opt. Lett. 11, 291 (1986).
[CrossRef] [PubMed]

For a discussion of birefringence in mirror coatings see S. L. Gilbert, C. E. Wieman, Phys. Rev. A 34, 792 (1986), and reference therein.
[CrossRef] [PubMed]

1985

Aspect, A.

C. Salamon, J. Dalibard, A. Aspect, H. Metcalf, C. Cohen-Tannoudji, Phys. Rev. Lett. 59, 1659 (1987).
[CrossRef]

A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, C. Cohen-Tannoudji, Phys. Rev. Lett. 57, 1688 (1986).
[CrossRef] [PubMed]

Balykin, V. I.

V. I. Balykin, A. I. Sidorov, Appl. Phys. B 42, 51 (1987).
[CrossRef]

Cohen-Tannoudji, C.

Dahmani, B.

Dalibard, J.

Drullinger, R.

Fan, C. G.

D. Sesko, C. G. Fan, C. E. Wieman, “Production of a cold atomic vapor using diode-laser cooling,” J. Opt. Soc. Am. B (to be published).

Gilbert, S. L.

For a discussion of birefringence in mirror coatings see S. L. Gilbert, C. E. Wieman, Phys. Rev. A 34, 792 (1986), and reference therein.
[CrossRef] [PubMed]

Heidmann, A.

A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, C. Cohen-Tannoudji, Phys. Rev. Lett. 57, 1688 (1986).
[CrossRef] [PubMed]

Hollberg, L.

Metcalf, H.

C. Salamon, J. Dalibard, A. Aspect, H. Metcalf, C. Cohen-Tannoudji, Phys. Rev. Lett. 59, 1659 (1987).
[CrossRef]

Salamon, C.

C. Salamon, J. Dalibard, A. Aspect, H. Metcalf, C. Cohen-Tannoudji, Phys. Rev. Lett. 59, 1659 (1987).
[CrossRef]

Salomon, C.

A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, C. Cohen-Tannoudji, Phys. Rev. Lett. 57, 1688 (1986).
[CrossRef] [PubMed]

Sesko, D.

D. Sesko, C. G. Fan, C. E. Wieman, “Production of a cold atomic vapor using diode-laser cooling,” J. Opt. Soc. Am. B (to be published).

Sidorov, A. I.

V. I. Balykin, A. I. Sidorov, Appl. Phys. B 42, 51 (1987).
[CrossRef]

Watts, R. N.

Wieman, C. E.

R. N. Watts, C. E. Wieman, Opt. Lett. 11, 291 (1986).
[CrossRef] [PubMed]

For a discussion of birefringence in mirror coatings see S. L. Gilbert, C. E. Wieman, Phys. Rev. A 34, 792 (1986), and reference therein.
[CrossRef] [PubMed]

D. Sesko, C. G. Fan, C. E. Wieman, “Production of a cold atomic vapor using diode-laser cooling,” J. Opt. Soc. Am. B (to be published).

Appl. Phys. B

V. I. Balykin, A. I. Sidorov, Appl. Phys. B 42, 51 (1987).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

For a discussion of birefringence in mirror coatings see S. L. Gilbert, C. E. Wieman, Phys. Rev. A 34, 792 (1986), and reference therein.
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, C. Cohen-Tannoudji, Phys. Rev. Lett. 57, 1688 (1986).
[CrossRef] [PubMed]

C. Salamon, J. Dalibard, A. Aspect, H. Metcalf, C. Cohen-Tannoudji, Phys. Rev. Lett. 59, 1659 (1987).
[CrossRef]

Other

D. Sesko, C. G. Fan, C. E. Wieman, “Production of a cold atomic vapor using diode-laser cooling,” J. Opt. Soc. Am. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the apparatus. The SBC has not been drawn to scale. It actually has a total length of 24 cm, and the fold angle is approximately 6 deg. LD1 is the prepumping laser that drives the 6S1/2 F = 3 to 6P3/2 F′ = 4 transition. LD2 is the laser that is locked to the cavity. λ/4, quarter-wave plate; PZT; piezoelectric transducer.

Fig. 2
Fig. 2

Signal as a function of hot-wire position. The squares show the beam profile with no laser present, while the crosses show the profile with red detuning and the circles show it for blue detuning. The transverse velocities corresponding to the hot-wire positions are also shown. The intracavity intensity was 21 W/cm2.

Fig. 3
Fig. 3

Dependence of the hot-wire signal on laser detuning when the hot wire is at the center of the cesium beam. The four curves represent different values of intracavity power and are characterized by their respective Rabi frequencies at the center of the Gaussian profile of the beam. The maximum intensity is 21 W/cm2 (corresponding to ωRabi = 195 Γ).

Fig. 4
Fig. 4

Optimum laser detuning for beam collimation as a function of the laser intensity. The intensity is given in units of the peak Rabi frequency as in Fig. 3.

Metrics