Abstract

A thin-film technique has been developed for vacuum fabrication of mirrors with Gaussian reflectivity profiles. Samples with diameters from 2 to 8 mm and assigned maximum reflectivities for visible or near-IR wavelengths have been made and their optical properties evaluated. By properly choosing both the geometry of the evaporation source and the masking system, one can obtain quasi-Gaussian or super-Gaussian reflectivity profiles.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zucker, Bell Syst. Tech. J. 49, 2349 (1970).
  2. S. De Silvestri, P. Laporta, V. Magni, O. Svelto, Opt. Lett. 12, 84 (1987).
    [CrossRef] [PubMed]
  3. N. McCarthy, P. Lavigne, Opt. Lett. 10, 553 (1985).
    [CrossRef] [PubMed]
  4. P. Lavigne, N. McCarthy, J. Demers, Appl. Opt. 24, 2581 (1985).
    [CrossRef] [PubMed]
  5. S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1970).
  6. C. Calì, V. Daneu, A. Orioli, S. Riva-Sanseverino, Appl. Opt. 15, 1327 (1976).
    [CrossRef] [PubMed]
  7. L. I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).
  8. C. Calì, V. Daneu, S. Riva-Sanseverino, Opt. Acta 27, 1267 (1980).
    [CrossRef]

1987 (1)

1985 (2)

1980 (1)

C. Calì, V. Daneu, S. Riva-Sanseverino, Opt. Acta 27, 1267 (1980).
[CrossRef]

1976 (1)

1970 (1)

H. Zucker, Bell Syst. Tech. J. 49, 2349 (1970).

Calì, C.

Daneu, V.

De Silvestri, S.

Demers, J.

Glang, R.

L. I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).

Laporta, P.

Lavigne, P.

Magni, V.

Maissel, L. I.

L. I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).

McCarthy, N.

Orioli, A.

Ramo, S.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1970).

Riva-Sanseverino, S.

Svelto, O.

Van Duzer, T.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1970).

Whinnery, J. R.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1970).

Zucker, H.

H. Zucker, Bell Syst. Tech. J. 49, 2349 (1970).

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

H. Zucker, Bell Syst. Tech. J. 49, 2349 (1970).

Opt. Acta (1)

C. Calì, V. Daneu, S. Riva-Sanseverino, Opt. Acta 27, 1267 (1980).
[CrossRef]

Opt. Lett. (2)

Other (2)

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1970).

L. I. Maissel, R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Reflectivity plot for a glass substrate covered with two dielectric films with linearly decreasing thickness (solid line) and an ideal Gaussian profile (squares).

Fig. 2
Fig. 2

Computed reflectivity-versus-radius plot for a mirror with three dielectric layers (solid line). The best-fitting super-Gaussian profile for the main lobe is also shown for comparison (squares). The equation y = ef, with f = x−4, is used.

Fig. 3
Fig. 3

Noncontact-mask deposition system.

Fig. 4
Fig. 4

In situ reflectometry for a two-layer 50% mirror at 633 nm.

Fig. 5
Fig. 5

Laser-scanning reflectometry along (a) minor and (b) major symmetry axes of an elliptical quasi-Gaussian mirror designed for 633 nm.

Fig. 6
Fig. 6

Reflectivity of a 6-mm large two-film mirror, designed for 1.06 μm. The best fit, with f = x−3, is shown.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R j = ( a 1 n k ) 2 + b 2 ( a + 1 n k ) 2 + b 2 ,
a = m j Re [ n i ] ,
b = m j { cos ( 2 β j d j ) Im [ n i ] + [ 1 n j n j ( Re [ n i ] ) 2 n j ( Im [ n i ] ) 2 ] sin ( 2 β j d j ) 2 } ,
m j = 1 / n j 2 [ cos ( β j d j ) n j sin ( β j d j ) Im [ n i ] ] 2 + [ sin ( β j d j ) Re [ n i ] ] 2 .
D = K ( a / b ) ( r 2 r ) + r 1 + r 2 a + b , r > r ,
D = K 2 r 1 / ( a + b ) , r r ,
r = ( 1 + b / a ) ( r 2 r 1 ) + r 1 .

Metrics