Abstract

A simple technique for long-pulse (0.2–2 μsee) generation with neodymium lasers has been demonstrated. Under the proper conditions, a normal-mode oscillator, operated in a single transverse mode, produces well-defined relaxation oscillations from which a single subpulse can be isolated for amplification. The characteristic subpulse temporal profile is ideal for saturated amplification without pulse shortening. Data are presented for a Nd:YLF system consisting of an oscillator followed by a 64-mm-long amplifier. Pulse energies in excess of 100 mJ were achieved with a small-signal gain of 630.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Moulton, J. Opt. Soc. B 3, 125 (1986).
    [CrossRef]
  2. J. L. Emmett, W. F. Krupke, J. B. Trenholme, Sov. J. Quantum Electron. 13, 1 (1984).
    [CrossRef]
  3. G. A. Rines, M. Thomas, M. Knights, E. P. Chicklis, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WM2.
  4. C. G. Layne, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1981) paper FB4.
  5. R. P. Sandoval, Appl. Opt. 18, 1328 (1979).
    [CrossRef] [PubMed]
  6. E. Panarella, L. L. T. Bradley, IEEE J. Quantum Electron. QE-11, 181 (1975).
    [CrossRef]
  7. G. Harigal, C. Balty, M. Bregman, M. Hibbs, A. Schaffer, H. Bjelkhagen, J. Hawkins, W. Williams, P. Nailor, R. Michaels, H. Akbari, Appl. Opt. 25, 4102 (1986).
    [CrossRef]
  8. W. E. Schmid, IEEE J. Quantum Electron. QE-16, 790 (1980).
    [CrossRef]
  9. A. C. Walker, A. J. Alcock, Rev. Sci. Instrum. 47, 915 (1976).
    [CrossRef]
  10. A. L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
    [CrossRef]
  11. L. M. Frantz, J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
    [CrossRef]
  12. W. E. Martin, D. Milam, IEEE J. Quantum Electron. QE-18, 1155 (1982).
    [CrossRef]
  13. H. H. Zenzie, M. Thomas, C. Carey, E. P. Chicklis, M. Knights, in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1987), p. 364.

1986 (2)

1984 (1)

J. L. Emmett, W. F. Krupke, J. B. Trenholme, Sov. J. Quantum Electron. 13, 1 (1984).
[CrossRef]

1982 (1)

W. E. Martin, D. Milam, IEEE J. Quantum Electron. QE-18, 1155 (1982).
[CrossRef]

1980 (1)

W. E. Schmid, IEEE J. Quantum Electron. QE-16, 790 (1980).
[CrossRef]

1979 (1)

1976 (1)

A. C. Walker, A. J. Alcock, Rev. Sci. Instrum. 47, 915 (1976).
[CrossRef]

1975 (1)

E. Panarella, L. L. T. Bradley, IEEE J. Quantum Electron. QE-11, 181 (1975).
[CrossRef]

1969 (1)

A. L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

1963 (1)

L. M. Frantz, J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Akbari, H.

Alcock, A. J.

A. C. Walker, A. J. Alcock, Rev. Sci. Instrum. 47, 915 (1976).
[CrossRef]

Balty, C.

Bjelkhagen, H.

Bradley, L. L. T.

E. Panarella, L. L. T. Bradley, IEEE J. Quantum Electron. QE-11, 181 (1975).
[CrossRef]

Bregman, M.

Carey, C.

H. H. Zenzie, M. Thomas, C. Carey, E. P. Chicklis, M. Knights, in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1987), p. 364.

Chicklis, E. P.

H. H. Zenzie, M. Thomas, C. Carey, E. P. Chicklis, M. Knights, in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1987), p. 364.

G. A. Rines, M. Thomas, M. Knights, E. P. Chicklis, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WM2.

Emmett, J. L.

J. L. Emmett, W. F. Krupke, J. B. Trenholme, Sov. J. Quantum Electron. 13, 1 (1984).
[CrossRef]

Frantz, L. M.

L. M. Frantz, J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Gabbe, D. R.

A. L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Harigal, G.

Harmer, A. L.

A. L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Hawkins, J.

Hibbs, M.

Knights, M.

H. H. Zenzie, M. Thomas, C. Carey, E. P. Chicklis, M. Knights, in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1987), p. 364.

G. A. Rines, M. Thomas, M. Knights, E. P. Chicklis, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WM2.

Krupke, W. F.

J. L. Emmett, W. F. Krupke, J. B. Trenholme, Sov. J. Quantum Electron. 13, 1 (1984).
[CrossRef]

Layne, C. G.

C. G. Layne, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1981) paper FB4.

Linz, A.

A. L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Martin, W. E.

W. E. Martin, D. Milam, IEEE J. Quantum Electron. QE-18, 1155 (1982).
[CrossRef]

Michaels, R.

Milam, D.

W. E. Martin, D. Milam, IEEE J. Quantum Electron. QE-18, 1155 (1982).
[CrossRef]

Moulton, P. F.

P. F. Moulton, J. Opt. Soc. B 3, 125 (1986).
[CrossRef]

Nailor, P.

Nodvik, J. S.

L. M. Frantz, J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

Panarella, E.

E. Panarella, L. L. T. Bradley, IEEE J. Quantum Electron. QE-11, 181 (1975).
[CrossRef]

Rines, G. A.

G. A. Rines, M. Thomas, M. Knights, E. P. Chicklis, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WM2.

Sandoval, R. P.

Schaffer, A.

Schmid, W. E.

W. E. Schmid, IEEE J. Quantum Electron. QE-16, 790 (1980).
[CrossRef]

Thomas, M.

G. A. Rines, M. Thomas, M. Knights, E. P. Chicklis, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WM2.

H. H. Zenzie, M. Thomas, C. Carey, E. P. Chicklis, M. Knights, in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1987), p. 364.

Trenholme, J. B.

J. L. Emmett, W. F. Krupke, J. B. Trenholme, Sov. J. Quantum Electron. 13, 1 (1984).
[CrossRef]

Walker, A. C.

A. C. Walker, A. J. Alcock, Rev. Sci. Instrum. 47, 915 (1976).
[CrossRef]

Williams, W.

Zenzie, H. H.

H. H. Zenzie, M. Thomas, C. Carey, E. P. Chicklis, M. Knights, in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1987), p. 364.

Appl. Opt. (2)

IEEE J. Quantum Electron. (3)

W. E. Schmid, IEEE J. Quantum Electron. QE-16, 790 (1980).
[CrossRef]

E. Panarella, L. L. T. Bradley, IEEE J. Quantum Electron. QE-11, 181 (1975).
[CrossRef]

W. E. Martin, D. Milam, IEEE J. Quantum Electron. QE-18, 1155 (1982).
[CrossRef]

J. Appl. Phys. (1)

L. M. Frantz, J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
[CrossRef]

J. Opt. Soc. B (1)

P. F. Moulton, J. Opt. Soc. B 3, 125 (1986).
[CrossRef]

J. Phys. Chem. Solids (1)

A. L. Harmer, A. Linz, D. R. Gabbe, J. Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Rev. Sci. Instrum. (1)

A. C. Walker, A. J. Alcock, Rev. Sci. Instrum. 47, 915 (1976).
[CrossRef]

Sov. J. Quantum Electron. (1)

J. L. Emmett, W. F. Krupke, J. B. Trenholme, Sov. J. Quantum Electron. 13, 1 (1984).
[CrossRef]

Other (3)

G. A. Rines, M. Thomas, M. Knights, E. P. Chicklis, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WM2.

C. G. Layne, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1981) paper FB4.

H. H. Zenzie, M. Thomas, C. Carey, E. P. Chicklis, M. Knights, in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, New York, 1987), p. 364.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the Nd:YLF SROL system. 10 mcc, concave mirror with 10-m radius of curvature.

Fig. 2
Fig. 2

Oscillator output pulse at 8.8× threshold: (a) rate-equation simulation, (b) first three calculated subpulses overlaid on an expanded time scale, (c) experimental result (10 μsec/division), and (d) experimental first subpulse on an expanded time scale (100 nsec/division).

Fig. 3
Fig. 3

Time-dependent Frantz–Nodvik simulations(solid lines) of a symmetric two-stage amplifier. (a) 500-nsec rectangular input pulse (dashed line), (b) SROL first subpulse (dashed line) input [Figs. 2(a) and 2(b)]. The amplifier pair increases the energy from 0.76 to 0.89 J.

Metrics