Abstract

Time profiles of the elastically scattered and stimulated Raman scattered radiation from single ethanol droplets illuminated by 100-psec mode-locked pulses were measured with a streak camera. The Q factor of the droplet, which acts as an optical cavity, was deduced from the decay time of the internally trapped radiation. Based on the intensity dependence of time profiles, it is also deduced that the photon lifetime is limited by the depletion of the internal intensity in generating nonlinear-optical radiation.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren, D. R. Huffman, The Scattering of Light by Small Particles (Wiley, New York, 1983).
  2. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
    [CrossRef] [PubMed]
  3. H.-B. Lin, A. L. Huston, B. L. Justine, A. J. Campillo, Opt. Lett. 11, 614 (1986).
    [CrossRef] [PubMed]
  4. J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
    [CrossRef] [PubMed]
  5. S.-X. Qian, J. B. Snow, R. K. Chang, in Laser Spectroscopy VII, T. W. Hänsch, Y. R. Shen, eds. (Springer-Verlag, Berlin, 1985), p. 204.
  6. P. R. Conwell, P. W. Barber, C. K. Rushforth, J. Opt. Soc. Am. A 1, 62 (1984).
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
    [CrossRef]
  8. R. Thurn, W. Kiefer, Appl. Opt. 24, 1515 (1985).
    [CrossRef] [PubMed]
  9. L. M. Folan, S. Arnold, S. D. Druger, Chem. Phys. Lett. 118, 322 (1985).
    [CrossRef]
  10. S. C. Hill, R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1986).
    [CrossRef]
  11. S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
    [CrossRef] [PubMed]
  12. T. D. Taylor, A. Acrivos, J. Fluid Mech. 18, 466 (1964).
    [CrossRef]

1986

1985

1984

1977

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

1964

T. D. Taylor, A. Acrivos, J. Fluid Mech. 18, 466 (1964).
[CrossRef]

Acrivos, A.

T. D. Taylor, A. Acrivos, J. Fluid Mech. 18, 466 (1964).
[CrossRef]

Arnold, S.

L. M. Folan, S. Arnold, S. D. Druger, Chem. Phys. Lett. 118, 322 (1985).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Barber, P. W.

Benner, R. E.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, The Scattering of Light by Small Particles (Wiley, New York, 1983).

Campillo, A. J.

Chang, R. K.

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

S.-X. Qian, J. B. Snow, R. K. Chang, in Laser Spectroscopy VII, T. W. Hänsch, Y. R. Shen, eds. (Springer-Verlag, Berlin, 1985), p. 204.

Conwell, P. R.

Druger, S. D.

L. M. Folan, S. Arnold, S. D. Druger, Chem. Phys. Lett. 118, 322 (1985).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Folan, L. M.

L. M. Folan, S. Arnold, S. D. Druger, Chem. Phys. Lett. 118, 322 (1985).
[CrossRef]

Hill, S. C.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, The Scattering of Light by Small Particles (Wiley, New York, 1983).

Huston, A. L.

Justine, B. L.

Kiefer, W.

Lin, H.-B.

Long, M. B.

Qian, S.-X.

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

S.-X. Qian, J. B. Snow, R. K. Chang, in Laser Spectroscopy VII, T. W. Hänsch, Y. R. Shen, eds. (Springer-Verlag, Berlin, 1985), p. 204.

Rushforth, C. K.

Snow, J. B.

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

S.-X. Qian, J. B. Snow, R. K. Chang, in Laser Spectroscopy VII, T. W. Hänsch, Y. R. Shen, eds. (Springer-Verlag, Berlin, 1985), p. 204.

Taylor, T. D.

T. D. Taylor, A. Acrivos, J. Fluid Mech. 18, 466 (1964).
[CrossRef]

Thurn, R.

Tzeng, H.-M.

Wall, K. F.

Appl. Opt.

Chem. Phys. Lett.

L. M. Folan, S. Arnold, S. D. Druger, Chem. Phys. Lett. 118, 322 (1985).
[CrossRef]

J. Fluid Mech.

T. D. Taylor, A. Acrivos, J. Fluid Mech. 18, 466 (1964).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. Lett.

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Other

C. F. Bohren, D. R. Huffman, The Scattering of Light by Small Particles (Wiley, New York, 1983).

S.-X. Qian, J. B. Snow, R. K. Chang, in Laser Spectroscopy VII, T. W. Hänsch, Y. R. Shen, eds. (Springer-Verlag, Berlin, 1985), p. 204.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental configuration. The relative directions of the laser and the collection optics with respect to the droplet are shown in the top portion. In the lower portion, the top view shows the illumination of the droplets by the focused beam in (a) and (b). At λ0, the bright spots due to the refracted and reflected rays are denoted in the side view by larger solid dots in (c) and (d). The much dimmer radiation from the edges is denoted by smaller open dots in (c) and (d). At λSRS, the red spots at edges A and B appeared equally bright [see the smaller solid dots in side views (e) and (f)]. The position of the streak camera slit relative to the droplet is shown in (c)–(f).

Fig. 2
Fig. 2

The time profiles of the following signals were detected by the streak camera: (1) transmission through a Fabry–Perot interferometer; (2) the input laser radiation channeled to the streak camera by an optical fiber; (3) elastic scattering from the dimmer spot shown in Fig. 1(d); (4) first-order SRS from edge A shown in Fig. 1(f); and (5) second-order SRS from edge A shown in Fig. 1(f).

Fig. 3
Fig. 3

Time profiles of the input and the first-order SRS as a function of input intensity. With 0.3Imax, the SRS signal drifts toward the right-hand edge of the streak camera where the sensitivity is low, and the intensity droop is, therefore, an artifact of this measurement. With 0.44Imax and 0.3Imax, the SRS decay time is longer than the 6.5-nsec streak-camera retrace, and thus the baselines rise at times before and after the 0-psec time delay.

Metrics