Abstract

We demonstrate a photon-counting optical-time-domain reflectometer (OTDR) operating at a wavelength of 0.85 μm at room temperature with high sensitivity (3 × 10−15 W) at high resolution (1.5 cm, 150 psec). Measurements of splice losses and Rayleigh scattering losses less then 0.1 dB with centimeter resolution are demonstrated to be possible with such an OTDR.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. F. Levine, C. G. Bethea, J. C. Campbell, Appl. Phys. Lett. 46, 333 (1985).
    [Crossref]
  2. B. F. Levine, C. G. Bethea, J. C. Campbell, Electron. Lett. 21, 194 (1985).
    [Crossref]
  3. C. G. Bethea, B. F. Levine, L. Marchut, V. D. Mattera, L. J. Peticolas, Electron. Lett. 22, 302 (1986).
    [Crossref]
  4. S. Cova, A. Longoni, A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
    [Crossref]
  5. S. Cova, A. Longoni, A. Andreoni, R. Cubeddu, IEEE J. Quantum Electron. QE-19, 630 (1983).
    [Crossref]
  6. S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Meth. Phys. Res. A 253, 482 (1987).
    [Crossref]
  7. S. Cova, G. Ripamonti, Electron. Lett. 22, 818 (1986).
    [Crossref]
  8. P. Healey, Electron. Lett. 17, 751 (1987).
    [Crossref]
  9. D. V. O’Connor, D. Phillips, Time-Correlated Single-Photon Counting (Academic, London, 1984).
  10. R. H. Haitz, J. Appl. Phys. 36, 3123 (1965).
    [Crossref]

1987 (2)

S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Meth. Phys. Res. A 253, 482 (1987).
[Crossref]

P. Healey, Electron. Lett. 17, 751 (1987).
[Crossref]

1986 (2)

S. Cova, G. Ripamonti, Electron. Lett. 22, 818 (1986).
[Crossref]

C. G. Bethea, B. F. Levine, L. Marchut, V. D. Mattera, L. J. Peticolas, Electron. Lett. 22, 302 (1986).
[Crossref]

1985 (2)

B. F. Levine, C. G. Bethea, J. C. Campbell, Appl. Phys. Lett. 46, 333 (1985).
[Crossref]

B. F. Levine, C. G. Bethea, J. C. Campbell, Electron. Lett. 21, 194 (1985).
[Crossref]

1983 (1)

S. Cova, A. Longoni, A. Andreoni, R. Cubeddu, IEEE J. Quantum Electron. QE-19, 630 (1983).
[Crossref]

1981 (1)

S. Cova, A. Longoni, A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
[Crossref]

1965 (1)

R. H. Haitz, J. Appl. Phys. 36, 3123 (1965).
[Crossref]

Andreoni, A.

S. Cova, A. Longoni, A. Andreoni, R. Cubeddu, IEEE J. Quantum Electron. QE-19, 630 (1983).
[Crossref]

S. Cova, A. Longoni, A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
[Crossref]

Bethea, C. G.

C. G. Bethea, B. F. Levine, L. Marchut, V. D. Mattera, L. J. Peticolas, Electron. Lett. 22, 302 (1986).
[Crossref]

B. F. Levine, C. G. Bethea, J. C. Campbell, Appl. Phys. Lett. 46, 333 (1985).
[Crossref]

B. F. Levine, C. G. Bethea, J. C. Campbell, Electron. Lett. 21, 194 (1985).
[Crossref]

Campbell, J. C.

B. F. Levine, C. G. Bethea, J. C. Campbell, Electron. Lett. 21, 194 (1985).
[Crossref]

B. F. Levine, C. G. Bethea, J. C. Campbell, Appl. Phys. Lett. 46, 333 (1985).
[Crossref]

Cova, S.

S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Meth. Phys. Res. A 253, 482 (1987).
[Crossref]

S. Cova, G. Ripamonti, Electron. Lett. 22, 818 (1986).
[Crossref]

S. Cova, A. Longoni, A. Andreoni, R. Cubeddu, IEEE J. Quantum Electron. QE-19, 630 (1983).
[Crossref]

S. Cova, A. Longoni, A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
[Crossref]

Cubeddu, R.

S. Cova, A. Longoni, A. Andreoni, R. Cubeddu, IEEE J. Quantum Electron. QE-19, 630 (1983).
[Crossref]

Haitz, R. H.

R. H. Haitz, J. Appl. Phys. 36, 3123 (1965).
[Crossref]

Healey, P.

P. Healey, Electron. Lett. 17, 751 (1987).
[Crossref]

Lacaita, A.

S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Meth. Phys. Res. A 253, 482 (1987).
[Crossref]

Levine, B. F.

C. G. Bethea, B. F. Levine, L. Marchut, V. D. Mattera, L. J. Peticolas, Electron. Lett. 22, 302 (1986).
[Crossref]

B. F. Levine, C. G. Bethea, J. C. Campbell, Electron. Lett. 21, 194 (1985).
[Crossref]

B. F. Levine, C. G. Bethea, J. C. Campbell, Appl. Phys. Lett. 46, 333 (1985).
[Crossref]

Longoni, A.

S. Cova, A. Longoni, A. Andreoni, R. Cubeddu, IEEE J. Quantum Electron. QE-19, 630 (1983).
[Crossref]

S. Cova, A. Longoni, A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
[Crossref]

Marchut, L.

C. G. Bethea, B. F. Levine, L. Marchut, V. D. Mattera, L. J. Peticolas, Electron. Lett. 22, 302 (1986).
[Crossref]

Mattera, V. D.

C. G. Bethea, B. F. Levine, L. Marchut, V. D. Mattera, L. J. Peticolas, Electron. Lett. 22, 302 (1986).
[Crossref]

O’Connor, D. V.

D. V. O’Connor, D. Phillips, Time-Correlated Single-Photon Counting (Academic, London, 1984).

Peticolas, L. J.

C. G. Bethea, B. F. Levine, L. Marchut, V. D. Mattera, L. J. Peticolas, Electron. Lett. 22, 302 (1986).
[Crossref]

Phillips, D.

D. V. O’Connor, D. Phillips, Time-Correlated Single-Photon Counting (Academic, London, 1984).

Ripamonti, G.

S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Meth. Phys. Res. A 253, 482 (1987).
[Crossref]

S. Cova, G. Ripamonti, Electron. Lett. 22, 818 (1986).
[Crossref]

Appl. Phys. Lett. (1)

B. F. Levine, C. G. Bethea, J. C. Campbell, Appl. Phys. Lett. 46, 333 (1985).
[Crossref]

Electron. Lett. (4)

B. F. Levine, C. G. Bethea, J. C. Campbell, Electron. Lett. 21, 194 (1985).
[Crossref]

C. G. Bethea, B. F. Levine, L. Marchut, V. D. Mattera, L. J. Peticolas, Electron. Lett. 22, 302 (1986).
[Crossref]

S. Cova, G. Ripamonti, Electron. Lett. 22, 818 (1986).
[Crossref]

P. Healey, Electron. Lett. 17, 751 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Cova, A. Longoni, A. Andreoni, R. Cubeddu, IEEE J. Quantum Electron. QE-19, 630 (1983).
[Crossref]

J. Appl. Phys. (1)

R. H. Haitz, J. Appl. Phys. 36, 3123 (1965).
[Crossref]

Nucl. Instrum. Meth. Phys. Res. A (1)

S. Cova, G. Ripamonti, A. Lacaita, Nucl. Instrum. Meth. Phys. Res. A 253, 482 (1987).
[Crossref]

Rev. Sci. Instrum. (1)

S. Cova, A. Longoni, A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
[Crossref]

Other (1)

D. V. O’Connor, D. Phillips, Time-Correlated Single-Photon Counting (Academic, London, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dark-count rate of the silicon SPAD versus excess bias voltage above the breakdown level, for different values of the dead time in the active-quenching circuit.

Fig. 2
Fig. 2

Backscattered power versus distance along a 855-m multimode fiber. The cessation of the Rayleigh scattering at the fiber end is readily seen.

Fig. 3
Fig. 3

Backscattered power versus distance and delay time. The peaks labeled A, B, and C are, respectively, the fusion splice inside the optical coupler and the beginning and the end of the 6-cm section of spliced fiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P m = η ( R ) 1 / 2 ,

Metrics