Abstract

A comparison of beam divergence and power-transport efficiency is made between Gaussian and Bessel beams when both beams have the same initial total power and the same initial full width at half-maximum.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef] [PubMed]
  2. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [CrossRef]

1987 (2)

J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Miceli, J. J.

J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Aperture geometry. Both beams are assumed to be confined to a finite aperture of radius R in the plane z = 0. A disk of radius a located in the plane z = d defines the area over which the beam intensity is t o be integrated.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x , y , z , t ) = exp [ i ( ω t β z ) ] ψ ( x , y , z = 0 , t = 0 ) ,
I ( x , y , z ) = | ψ ( x , y , z , t ) | 2 = | ψ ( x , y , z = 0 , t = 0 ) | 2
ψ ( x , y , z = 0 , t = 0 ) = J 0 ( α ρ ) ,
E ( x , y , z = 0 ) = ξ G exp ( ρ 2 / 2 σ 2 ) Gaussian ,
E ( x , y , z = 0 ) = ξ B J 0 ( α ρ ) Bessel
P T = ( c 2 π ) π 2 ξ G 2 σ 2 Gaussian ,
P T = ( c 2 π ) ξ B 2 R α Bessel ,
Z max = R [ ( κ / α ) 2 1 ] + 1 / 2 ,
F a R 1 / ( 1 + 4 N / 3 ) ,
R = λ d / π a ,
F π a 2 / λ d .
ξ B 2 = ( 4 π / c ) ( P T / R a ) .
σ 2 = d / κ ,
ξ G 2 = ( 8 π / c ) ( P T / λ d ) ,
F = 1 exp ( π a 2 / λ d ) π ( a 2 / λ d ) .
Bessel range N × Gaussian range ,
total Bessel power N × total Gaussian power .

Metrics