Abstract

The performance of a combination of prisms and diffraction gratings as phase correctors is calculated numerically. Special attention is given to the regime where the pulse duration is 10 fsec or less.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
    [Crossref]
  2. J. G. Fujimoto, A. M. Weiner, E. P. Ippen, Appl. Phys. Lett. 44, 832 (1984).
    [Crossref]
  3. J. M. Halbout, D. Grischkowsky, Appl. Phys. Lett. 45, 1281 (1984).
    [Crossref]
  4. E. P. Treacy, IEEE J. Quantum Electron. QE-9, 454 (1969).
    [Crossref]
  5. W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, J. A. Valdmanis, C. V. Shank, Appl. Phys. Lett. 46, 1120 (1985); for a theoretical analysis of fiber-grating compression, see W. J. Tomlinson, W. H. Knox, J. Opt. Soc. Am. B 4, 1404 (1987).
    [Crossref]
  6. I. P. Christov, I. V. Tomov, Opt. Commun. 58, 338 (1986).
    [Crossref]
  7. R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, Opt. Lett. 12, 483 (1987).
    [Crossref] [PubMed]
  8. R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [Crossref] [PubMed]
  9. O. E. Martinez, J. P. Gordon, R. L. Fork, J. Opt. Soc. Am. A 1, 1003 (1984).
    [Crossref]
  10. R. Meinel, Opt. Commun. 47, 343 (1983).
    [Crossref]
  11. W. J. Tomlinson, R. H. Stolen, C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
    [Crossref]

1987 (1)

1986 (1)

I. P. Christov, I. V. Tomov, Opt. Commun. 58, 338 (1986).
[Crossref]

1985 (1)

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, J. A. Valdmanis, C. V. Shank, Appl. Phys. Lett. 46, 1120 (1985); for a theoretical analysis of fiber-grating compression, see W. J. Tomlinson, W. H. Knox, J. Opt. Soc. Am. B 4, 1404 (1987).
[Crossref]

1984 (5)

1983 (1)

R. Meinel, Opt. Commun. 47, 343 (1983).
[Crossref]

1982 (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

1969 (1)

E. P. Treacy, IEEE J. Quantum Electron. QE-9, 454 (1969).
[Crossref]

Becker, P. C.

Brito Cruz, C. H.

Christov, I. P.

I. P. Christov, I. V. Tomov, Opt. Commun. 58, 338 (1986).
[Crossref]

Downer, M. C.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, J. A. Valdmanis, C. V. Shank, Appl. Phys. Lett. 46, 1120 (1985); for a theoretical analysis of fiber-grating compression, see W. J. Tomlinson, W. H. Knox, J. Opt. Soc. Am. B 4, 1404 (1987).
[Crossref]

Fork, R. L.

R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, Opt. Lett. 12, 483 (1987).
[Crossref] [PubMed]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, J. A. Valdmanis, C. V. Shank, Appl. Phys. Lett. 46, 1120 (1985); for a theoretical analysis of fiber-grating compression, see W. J. Tomlinson, W. H. Knox, J. Opt. Soc. Am. B 4, 1404 (1987).
[Crossref]

R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984).
[Crossref] [PubMed]

O. E. Martinez, J. P. Gordon, R. L. Fork, J. Opt. Soc. Am. A 1, 1003 (1984).
[Crossref]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

Fujimoto, J. G.

J. G. Fujimoto, A. M. Weiner, E. P. Ippen, Appl. Phys. Lett. 44, 832 (1984).
[Crossref]

Gordon, J. P.

Grischkowsky, D.

J. M. Halbout, D. Grischkowsky, Appl. Phys. Lett. 45, 1281 (1984).
[Crossref]

Halbout, J. M.

J. M. Halbout, D. Grischkowsky, Appl. Phys. Lett. 45, 1281 (1984).
[Crossref]

Ippen, E. P.

J. G. Fujimoto, A. M. Weiner, E. P. Ippen, Appl. Phys. Lett. 44, 832 (1984).
[Crossref]

Knox, W. H.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, J. A. Valdmanis, C. V. Shank, Appl. Phys. Lett. 46, 1120 (1985); for a theoretical analysis of fiber-grating compression, see W. J. Tomlinson, W. H. Knox, J. Opt. Soc. Am. B 4, 1404 (1987).
[Crossref]

Martinez, O. E.

Meinel, R.

R. Meinel, Opt. Commun. 47, 343 (1983).
[Crossref]

Shank, C. V.

R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, Opt. Lett. 12, 483 (1987).
[Crossref] [PubMed]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, J. A. Valdmanis, C. V. Shank, Appl. Phys. Lett. 46, 1120 (1985); for a theoretical analysis of fiber-grating compression, see W. J. Tomlinson, W. H. Knox, J. Opt. Soc. Am. B 4, 1404 (1987).
[Crossref]

W. J. Tomlinson, R. H. Stolen, C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[Crossref]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

Stolen, R. H.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, J. A. Valdmanis, C. V. Shank, Appl. Phys. Lett. 46, 1120 (1985); for a theoretical analysis of fiber-grating compression, see W. J. Tomlinson, W. H. Knox, J. Opt. Soc. Am. B 4, 1404 (1987).
[Crossref]

W. J. Tomlinson, R. H. Stolen, C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[Crossref]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

Tomlinson, W. J.

W. J. Tomlinson, R. H. Stolen, C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[Crossref]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

Tomov, I. V.

I. P. Christov, I. V. Tomov, Opt. Commun. 58, 338 (1986).
[Crossref]

Treacy, E. P.

E. P. Treacy, IEEE J. Quantum Electron. QE-9, 454 (1969).
[Crossref]

Valdmanis, J. A.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, J. A. Valdmanis, C. V. Shank, Appl. Phys. Lett. 46, 1120 (1985); for a theoretical analysis of fiber-grating compression, see W. J. Tomlinson, W. H. Knox, J. Opt. Soc. Am. B 4, 1404 (1987).
[Crossref]

Weiner, A. M.

J. G. Fujimoto, A. M. Weiner, E. P. Ippen, Appl. Phys. Lett. 44, 832 (1984).
[Crossref]

Yen, R.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

Appl. Phys. Lett. (4)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[Crossref]

J. G. Fujimoto, A. M. Weiner, E. P. Ippen, Appl. Phys. Lett. 44, 832 (1984).
[Crossref]

J. M. Halbout, D. Grischkowsky, Appl. Phys. Lett. 45, 1281 (1984).
[Crossref]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, J. A. Valdmanis, C. V. Shank, Appl. Phys. Lett. 46, 1120 (1985); for a theoretical analysis of fiber-grating compression, see W. J. Tomlinson, W. H. Knox, J. Opt. Soc. Am. B 4, 1404 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

E. P. Treacy, IEEE J. Quantum Electron. QE-9, 454 (1969).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

R. Meinel, Opt. Commun. 47, 343 (1983).
[Crossref]

I. P. Christov, I. V. Tomov, Opt. Commun. 58, 338 (1986).
[Crossref]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Parameters used in describing propagation of the optical pulse through the prism sequence. The angle of incidence at the entrance face of the first prism is ψ1 and the angle with respect to the normal to the exit face is ψ2. The angle between a line drawn between prism apices and the direction of a ray leaving the first prism at ψ2 is denoted by β. The distance between prism apices is lp.

Fig. 2
Fig. 2

Plot of the second derivative of phase with respect to frequency for the prisms (short-dashed curve), gratings (long-dashed curve), and material (dashed–dotted curve) and for the total phase shift (solid curve).

Fig. 3
Fig. 3

Calculated pulse intensity versus time for the cases of compression using (a) only gratings and material dispersion and (b) a combination of prisms, gratings, and material dispersion.

Fig. 4
Fig. 4

Plot of energy in the main peak of the compressed pulse for the case of combined prisms and gratings and for the case of gratings alone. The pulse bandwidth is in units of angular frequency (rad/fsec).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ T ( ω ) = ϕ p ( ω ) + ϕ g ( ω ) + ϕ m ( ω ) ,
ϕ m ( ω ) = ω l m c n m ( ω ) ,
ϕ g ( ω ) = 2 ω l g c [ 1 ( 2 π c ω d sin γ ) 2 ] 1 / 2 ,
ϕ p ( ω ) = 2 ω l p c cos [ β ( ω ) ] ,
ϕ p ( ω ) = 2 ω l p c cos [ ψ 2 max ψ 2 ( ω ) ] .

Metrics