Abstract

A new technique for optical pulse compression is proposed that incorporates abnormal Bragg diffraction in a TeO2 acousto-optical deflector. A transverse acoustic wave in TeO2 with a velocity as slow as 616 m/sec and a carrier frequency of 250 MHz produces a dispersion constant of 0.1 psec/nm at 600 nm. The 300-fsec optical pulse from a cavity-damped, synchronously pumped laser is successfully compressed to 70 fsec with a peak power of 83 kW.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
    [CrossRef]
  2. J. A. Valdmanis, R. L. Fork, J. P. Gordon, Opt. Lett. 10, 131 (1985).
    [CrossRef] [PubMed]
  3. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]
  4. W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
    [CrossRef]
  5. J. D. Kafka, T. Baer, Opt. Lett. 12, 401 (1987).
    [CrossRef] [PubMed]
  6. N. Uchida, N. Niizeki, Proc. IEEE 61, 1073 (1973).
    [CrossRef]
  7. J. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, Appl. Phys. Lett. 47, 87 (1985).
    [CrossRef]
  8. R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984); see also R. L. Fork, Opt. Lett. 11, 629 (1986).
    [CrossRef] [PubMed]
  9. M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, J. Opt. Soc. Am. B ( 52151988).
    [CrossRef]
  10. R. W. Dixon, IEEE J. Quantum Electron. QE-3, 85 (1967).
    [CrossRef]
  11. M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, Appl. Phys. Lett. 51, 728 (1987).
    [CrossRef]
  12. A. M. Johnson, W. M. Simpson, IEEE J. Quantum Electron. QE-22, 133 (1986).
    [CrossRef]

1988 (1)

1987 (2)

J. D. Kafka, T. Baer, Opt. Lett. 12, 401 (1987).
[CrossRef] [PubMed]

M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, Appl. Phys. Lett. 51, 728 (1987).
[CrossRef]

1986 (1)

A. M. Johnson, W. M. Simpson, IEEE J. Quantum Electron. QE-22, 133 (1986).
[CrossRef]

1985 (3)

J. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

J. A. Valdmanis, R. L. Fork, J. P. Gordon, Opt. Lett. 10, 131 (1985).
[CrossRef] [PubMed]

1984 (1)

1981 (1)

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

1973 (1)

N. Uchida, N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

1967 (1)

R. W. Dixon, IEEE J. Quantum Electron. QE-3, 85 (1967).
[CrossRef]

Baer, T.

Dixon, R. W.

R. W. Dixon, IEEE J. Quantum Electron. QE-3, 85 (1967).
[CrossRef]

Downer, M. C.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

Fork, R. L.

J. A. Valdmanis, R. L. Fork, J. P. Gordon, Opt. Lett. 10, 131 (1985).
[CrossRef] [PubMed]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984); see also R. L. Fork, Opt. Lett. 11, 629 (1986).
[CrossRef] [PubMed]

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

Gordon, J. P.

Greene, B. I.

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

Heritage, J.

J. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

Johnson, A. M.

A. M. Johnson, W. M. Simpson, IEEE J. Quantum Electron. QE-22, 133 (1986).
[CrossRef]

Kafka, J. D.

Knox, W. H.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

Kubota, H.

M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, J. Opt. Soc. Am. B ( 52151988).
[CrossRef]

M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, Appl. Phys. Lett. 51, 728 (1987).
[CrossRef]

Martinez, O. E.

Nakashima, T.

M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, J. Opt. Soc. Am. B ( 52151988).
[CrossRef]

M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, Appl. Phys. Lett. 51, 728 (1987).
[CrossRef]

Nakazawa, M.

M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, J. Opt. Soc. Am. B ( 52151988).
[CrossRef]

M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, Appl. Phys. Lett. 51, 728 (1987).
[CrossRef]

Niizeki, N.

N. Uchida, N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

Seikai, S.

M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, J. Opt. Soc. Am. B ( 52151988).
[CrossRef]

M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, Appl. Phys. Lett. 51, 728 (1987).
[CrossRef]

Shank, C. V.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

Simpson, W. M.

A. M. Johnson, W. M. Simpson, IEEE J. Quantum Electron. QE-22, 133 (1986).
[CrossRef]

Stolen, R. H.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

Thurston, R. N.

J. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

Tomlinson, W. J.

J. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Uchida, N.

N. Uchida, N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

Valdmanis, J. A.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

J. A. Valdmanis, R. L. Fork, J. P. Gordon, Opt. Lett. 10, 131 (1985).
[CrossRef] [PubMed]

Weiner, A. M.

J. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

Appl. Phys. Lett. (4)

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, Appl. Phys. Lett. 46, 1120 (1985).
[CrossRef]

M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, Appl. Phys. Lett. 51, 728 (1987).
[CrossRef]

J. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. W. Dixon, IEEE J. Quantum Electron. QE-3, 85 (1967).
[CrossRef]

A. M. Johnson, W. M. Simpson, IEEE J. Quantum Electron. QE-22, 133 (1986).
[CrossRef]

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Proc. IEEE (1)

N. Uchida, N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Generation schemes of negative GVD. (a) A pair of the Brewster-angled prisms, (b) acousto-optical light deflector and a prism, (c) AO deflector and a corner-cube reflector.

Fig. 2
Fig. 2

Operation mechanism of the AO deflector under an abnormal Bragg diffraction. (a) Momentum conservation, (b) indicatrices for incident and diffracted waves, which is illustrated in (c).

Fig. 3
Fig. 3

Wavelength dependence on dispersion constant (picoseconds per nanometer). (a) Prism + prism, (b) AO + prism, (c) AO + AO, (d) grating pairs for 1200 lines/mm.

Fig. 4
Fig. 4

Spectra in pulse-compression process using a TeO2 AO deflector. (a) Input laser spectrum, (b) fiber output, (c) AO output.

Fig. 5
Fig. 5

Autocorrelation waveforms in a pulse-compression process using a TeO2 AO deflector. (a) Input laser pulse, (b) fiber output, (c) the compressed pulse.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ τ Δ λ = λ L c ( 2 sin α 2 cos φ d n d λ ) 2 ,
tan θ = λ f s / V s .
l 2 = Δ θ L = f s L V s Δ λ .
Δ τ Δ λ = λ L c ( 2 sin α 2 cos φ d n d λ f s V s ) ,
Δ τ Δ λ = d τ d θ d θ d λ = ( L c sin θ cos 2 θ ) cos 2 θ ( f s V s ) λ L c ( f s V s ) 2 for θ 1 .

Metrics