Abstract

We report the first demonstration to our knowledge of multipass amplification of soft x rays. A gain medium of neonlike selenium ions was placed within a resonant cavity composed of a multilayer mirror and a beam splitter designed for normal-incidence use at the 20.63- and 20.96-nm laser lines of the neonlike selenium. The laser-cavity output was time resolved and exhibited three distinct temporal components identifiable as the single-, double-, and triple-pass amplified emission. In these experiments, multipass amplification was limited by the finite duration of the gain medium.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Matthews et al., Phys. Rev. Lett. 54, 110 (1985); B. J. MacGowan et al., J. Appl. Phys. 61, 5243 (1987); Phys. Rev. A. 59, 2157 (1987).
    [CrossRef] [PubMed]
  2. N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 563, 360 (1985); J. Phys. (Paris) C6, 277 (1986); Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986).
  3. M. Kuhne et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 76 (1986); D. G. Stearns et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 91 (1986); N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986).
  4. S. Suckewer et al., Phys. Rev. Lett. 55, 1753 (1985); C. J. Keane et al., Proc. Soc. Photo-Opt. Instrum. Eng. 563, 253 (1985); N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986); “Time-resolved double-pass amplification of spontaneous emission at soft-x-ray wavelengths,” submitted to Phys. Rev. Lett.
    [CrossRef] [PubMed]
  5. Although the length of the x-ray laser target is 2.0 cm, the gain length is only 1.8 cm because of the 0.2-cm hole at target center to match a similar hole in the line focus of the optical laser. The length of the laser line focus is 2.3 cm to ensure that the entire length of the target is uniformly illuminated.
  6. M. D. Rosen et al., Phys. Rev. Lett. 54, 106 (1985); R. A. London, M. D. Rosen, Phys. Fluids 29, 3813 (1986).
    [CrossRef] [PubMed]
  7. N. M. Ceglio, in Laser Interaction and Related Plasma Phenomena, H. Hora, G. Miley, eds. (Plenum, New York, 1986), Vol. 7, p. 39; N. M. Ceglio, H. Medecki, Proc. Soc. Photo-Opt. Instrum. Eng. 688, 26 (1986).
    [CrossRef]
  8. Since the temporal separation of single-pass and double-pass beams corresponds to the geometrical path difference of the beams, we can conclude that significant nonlinear distortion of pulse shape did not occur in these experiments, strong evidence that gain saturation was not achieved.
  9. In the interpretation of our double- and triple-pass data, we cannot rule out the possibility of cavity losses due to slight mirror misalignment, late-time mirror damage, or transport inefficiency resulting from plasma gradients. However, we have no direct evidence for the importance of any of these mechanisms in our experiments, whereas short gain lifetime is clearly a limiting factor in the multipass amplification process.

1986 (1)

M. Kuhne et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 76 (1986); D. G. Stearns et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 91 (1986); N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986).

1985 (4)

S. Suckewer et al., Phys. Rev. Lett. 55, 1753 (1985); C. J. Keane et al., Proc. Soc. Photo-Opt. Instrum. Eng. 563, 253 (1985); N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986); “Time-resolved double-pass amplification of spontaneous emission at soft-x-ray wavelengths,” submitted to Phys. Rev. Lett.
[CrossRef] [PubMed]

M. D. Rosen et al., Phys. Rev. Lett. 54, 106 (1985); R. A. London, M. D. Rosen, Phys. Fluids 29, 3813 (1986).
[CrossRef] [PubMed]

D. L. Matthews et al., Phys. Rev. Lett. 54, 110 (1985); B. J. MacGowan et al., J. Appl. Phys. 61, 5243 (1987); Phys. Rev. A. 59, 2157 (1987).
[CrossRef] [PubMed]

N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 563, 360 (1985); J. Phys. (Paris) C6, 277 (1986); Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986).

Ceglio, N. M.

N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 563, 360 (1985); J. Phys. (Paris) C6, 277 (1986); Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986).

N. M. Ceglio, in Laser Interaction and Related Plasma Phenomena, H. Hora, G. Miley, eds. (Plenum, New York, 1986), Vol. 7, p. 39; N. M. Ceglio, H. Medecki, Proc. Soc. Photo-Opt. Instrum. Eng. 688, 26 (1986).
[CrossRef]

Kuhne, M.

M. Kuhne et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 76 (1986); D. G. Stearns et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 91 (1986); N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986).

Matthews, D. L.

D. L. Matthews et al., Phys. Rev. Lett. 54, 110 (1985); B. J. MacGowan et al., J. Appl. Phys. 61, 5243 (1987); Phys. Rev. A. 59, 2157 (1987).
[CrossRef] [PubMed]

Rosen, M. D.

M. D. Rosen et al., Phys. Rev. Lett. 54, 106 (1985); R. A. London, M. D. Rosen, Phys. Fluids 29, 3813 (1986).
[CrossRef] [PubMed]

Suckewer, S.

S. Suckewer et al., Phys. Rev. Lett. 55, 1753 (1985); C. J. Keane et al., Proc. Soc. Photo-Opt. Instrum. Eng. 563, 253 (1985); N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986); “Time-resolved double-pass amplification of spontaneous emission at soft-x-ray wavelengths,” submitted to Phys. Rev. Lett.
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

D. L. Matthews et al., Phys. Rev. Lett. 54, 110 (1985); B. J. MacGowan et al., J. Appl. Phys. 61, 5243 (1987); Phys. Rev. A. 59, 2157 (1987).
[CrossRef] [PubMed]

S. Suckewer et al., Phys. Rev. Lett. 55, 1753 (1985); C. J. Keane et al., Proc. Soc. Photo-Opt. Instrum. Eng. 563, 253 (1985); N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986); “Time-resolved double-pass amplification of spontaneous emission at soft-x-ray wavelengths,” submitted to Phys. Rev. Lett.
[CrossRef] [PubMed]

M. D. Rosen et al., Phys. Rev. Lett. 54, 106 (1985); R. A. London, M. D. Rosen, Phys. Fluids 29, 3813 (1986).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 563, 360 (1985); J. Phys. (Paris) C6, 277 (1986); Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986).

M. Kuhne et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 76 (1986); D. G. Stearns et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 91 (1986); N. M. Ceglio et al., Proc. Soc. Photo-Opt. Instrum. Eng. 688, 44 (1986).

Other (4)

Although the length of the x-ray laser target is 2.0 cm, the gain length is only 1.8 cm because of the 0.2-cm hole at target center to match a similar hole in the line focus of the optical laser. The length of the laser line focus is 2.3 cm to ensure that the entire length of the target is uniformly illuminated.

N. M. Ceglio, in Laser Interaction and Related Plasma Phenomena, H. Hora, G. Miley, eds. (Plenum, New York, 1986), Vol. 7, p. 39; N. M. Ceglio, H. Medecki, Proc. Soc. Photo-Opt. Instrum. Eng. 688, 26 (1986).
[CrossRef]

Since the temporal separation of single-pass and double-pass beams corresponds to the geometrical path difference of the beams, we can conclude that significant nonlinear distortion of pulse shape did not occur in these experiments, strong evidence that gain saturation was not achieved.

In the interpretation of our double- and triple-pass data, we cannot rule out the possibility of cavity losses due to slight mirror misalignment, late-time mirror damage, or transport inefficiency resulting from plasma gradients. However, we have no direct evidence for the importance of any of these mechanisms in our experiments, whereas short gain lifetime is clearly a limiting factor in the multipass amplification process.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

The time-resolved double-pass cavity output at 20.63 and 20.96 nm (summed together) for experiment #17071004. The double-pass amplified signal is seven times more intense than the single-pass ASE.

Fig. 2
Fig. 2

The time-resolved multipass cavity output at 20.63 nm for experiment #17071705. Total cavity length was 8.5 cm. The reduced amplification for the third and higher-number passes was due to the short gain lifetime.

Metrics