Abstract

The influence of amplified spontaneous emission on the time-dependent gain of a laser amplifier is considered by using a simple model. Experimental measurements of Ti:Al2O3 amplifier gain are in excellent agreement with the model.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
    [CrossRef]
  2. D. D. Lowenthal, J. M. Eggleston, IEEE J. Quantum Electron. QE-22, 1165 (1986).
    [CrossRef]
  3. G. Haag, M. Munz, G. Marowsky, IEEE J. Quantum Electron. QE-19, 1149 (1983).
    [CrossRef]
  4. H. Maeda, A. Yariv, Phys. Lett. 43A, 383 (1973).
  5. L. Allen, G. I. Peters, Phys. Rev. A 8, 2031 (1973).
    [CrossRef]
  6. U. Ganiel, A. Hurdy, G. Neumann, D. Treves, IEEE J. Quantum Electron. QE-11, 881 (1975).
    [CrossRef]
  7. J. B. Moreno, G. A. Fisk, J. M. Hoffman, J. Appl. Phys. 48, 238 (1977).
    [CrossRef]
  8. J. B. Trenholme, NRL Memorandum Report No. 2480 (Naval Research Laboratory, Washington, D.C., 1972).
  9. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 6 and 13.
  10. P. A. Schulz, A. Walther, “A simple model for ASE spectral narrowing,” Solid State Research Rep. (Lincoln Laboratory, MIT, Cambridge, Mass., to be published).
  11. A. Sanchez, R. E. Fahey, A. J. Strauss, R. L. Aggarwal, in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds., Vol. 52 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1987), pp. 202–207.
  12. P. Albers, E. Stark, G. Huber, J. Opt. Soc. Am. B 3, 134 (1986).
    [CrossRef]

1988 (1)

K. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

1986 (2)

D. D. Lowenthal, J. M. Eggleston, IEEE J. Quantum Electron. QE-22, 1165 (1986).
[CrossRef]

P. Albers, E. Stark, G. Huber, J. Opt. Soc. Am. B 3, 134 (1986).
[CrossRef]

1983 (1)

G. Haag, M. Munz, G. Marowsky, IEEE J. Quantum Electron. QE-19, 1149 (1983).
[CrossRef]

1977 (1)

J. B. Moreno, G. A. Fisk, J. M. Hoffman, J. Appl. Phys. 48, 238 (1977).
[CrossRef]

1975 (1)

U. Ganiel, A. Hurdy, G. Neumann, D. Treves, IEEE J. Quantum Electron. QE-11, 881 (1975).
[CrossRef]

1973 (2)

H. Maeda, A. Yariv, Phys. Lett. 43A, 383 (1973).

L. Allen, G. I. Peters, Phys. Rev. A 8, 2031 (1973).
[CrossRef]

Aggarwal, R. L.

K. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

A. Sanchez, R. E. Fahey, A. J. Strauss, R. L. Aggarwal, in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds., Vol. 52 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1987), pp. 202–207.

Albers, P.

Allen, L.

L. Allen, G. I. Peters, Phys. Rev. A 8, 2031 (1973).
[CrossRef]

Eggleston, J. M.

D. D. Lowenthal, J. M. Eggleston, IEEE J. Quantum Electron. QE-22, 1165 (1986).
[CrossRef]

Fahey, R. E.

K. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

A. Sanchez, R. E. Fahey, A. J. Strauss, R. L. Aggarwal, in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds., Vol. 52 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1987), pp. 202–207.

Fisk, G. A.

J. B. Moreno, G. A. Fisk, J. M. Hoffman, J. Appl. Phys. 48, 238 (1977).
[CrossRef]

Ganiel, U.

U. Ganiel, A. Hurdy, G. Neumann, D. Treves, IEEE J. Quantum Electron. QE-11, 881 (1975).
[CrossRef]

Haag, G.

G. Haag, M. Munz, G. Marowsky, IEEE J. Quantum Electron. QE-19, 1149 (1983).
[CrossRef]

Hoffman, J. M.

J. B. Moreno, G. A. Fisk, J. M. Hoffman, J. Appl. Phys. 48, 238 (1977).
[CrossRef]

Huber, G.

Hurdy, A.

U. Ganiel, A. Hurdy, G. Neumann, D. Treves, IEEE J. Quantum Electron. QE-11, 881 (1975).
[CrossRef]

Lowenthal, D. D.

D. D. Lowenthal, J. M. Eggleston, IEEE J. Quantum Electron. QE-22, 1165 (1986).
[CrossRef]

Maeda, H.

H. Maeda, A. Yariv, Phys. Lett. 43A, 383 (1973).

Marowsky, G.

G. Haag, M. Munz, G. Marowsky, IEEE J. Quantum Electron. QE-19, 1149 (1983).
[CrossRef]

Moreno, J. B.

J. B. Moreno, G. A. Fisk, J. M. Hoffman, J. Appl. Phys. 48, 238 (1977).
[CrossRef]

Munz, M.

G. Haag, M. Munz, G. Marowsky, IEEE J. Quantum Electron. QE-19, 1149 (1983).
[CrossRef]

Neumann, G.

U. Ganiel, A. Hurdy, G. Neumann, D. Treves, IEEE J. Quantum Electron. QE-11, 881 (1975).
[CrossRef]

Peters, G. I.

L. Allen, G. I. Peters, Phys. Rev. A 8, 2031 (1973).
[CrossRef]

Sanchez, A.

A. Sanchez, R. E. Fahey, A. J. Strauss, R. L. Aggarwal, in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds., Vol. 52 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1987), pp. 202–207.

Schulz, P. A.

P. A. Schulz, A. Walther, “A simple model for ASE spectral narrowing,” Solid State Research Rep. (Lincoln Laboratory, MIT, Cambridge, Mass., to be published).

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 6 and 13.

Stark, E.

Strauss, A. J.

K. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

A. Sanchez, R. E. Fahey, A. J. Strauss, R. L. Aggarwal, in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds., Vol. 52 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1987), pp. 202–207.

Trenholme, J. B.

J. B. Trenholme, NRL Memorandum Report No. 2480 (Naval Research Laboratory, Washington, D.C., 1972).

Treves, D.

U. Ganiel, A. Hurdy, G. Neumann, D. Treves, IEEE J. Quantum Electron. QE-11, 881 (1975).
[CrossRef]

Wall, K.

K. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

Walther, A.

P. A. Schulz, A. Walther, “A simple model for ASE spectral narrowing,” Solid State Research Rep. (Lincoln Laboratory, MIT, Cambridge, Mass., to be published).

Yariv, A.

H. Maeda, A. Yariv, Phys. Lett. 43A, 383 (1973).

IEEE J. Quantum Electron. (4)

K. Wall, R. L. Aggarwal, R. E. Fahey, A. J. Strauss, IEEE J. Quantum Electron. QE-24, 1016 (1988).
[CrossRef]

D. D. Lowenthal, J. M. Eggleston, IEEE J. Quantum Electron. QE-22, 1165 (1986).
[CrossRef]

G. Haag, M. Munz, G. Marowsky, IEEE J. Quantum Electron. QE-19, 1149 (1983).
[CrossRef]

U. Ganiel, A. Hurdy, G. Neumann, D. Treves, IEEE J. Quantum Electron. QE-11, 881 (1975).
[CrossRef]

J. Appl. Phys. (1)

J. B. Moreno, G. A. Fisk, J. M. Hoffman, J. Appl. Phys. 48, 238 (1977).
[CrossRef]

J. Opt. Soc. Am. B (1)

Phys. Lett. (1)

H. Maeda, A. Yariv, Phys. Lett. 43A, 383 (1973).

Phys. Rev. A (1)

L. Allen, G. I. Peters, Phys. Rev. A 8, 2031 (1973).
[CrossRef]

Other (4)

J. B. Trenholme, NRL Memorandum Report No. 2480 (Naval Research Laboratory, Washington, D.C., 1972).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 6 and 13.

P. A. Schulz, A. Walther, “A simple model for ASE spectral narrowing,” Solid State Research Rep. (Lincoln Laboratory, MIT, Cambridge, Mass., to be published).

A. Sanchez, R. E. Fahey, A. J. Strauss, R. L. Aggarwal, in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds., Vol. 52 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1987), pp. 202–207.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental decay (the solid line) of the incremental power gain at 791 nm in a Ti:A12O3 crystal taken from Ref. 1. The model (the filled circles) gives an excellent fit to the decay with (τ/τr)(Ω/2π) = 0.04. The experimentally measured value of γ(t = 0) is 5.3. The dashed line shows the decay curve when ASE is not included in the model.

Fig. 2
Fig. 2

Log–log plot of the parameter (τ/τr)(Ω/2π) obtained from the model-versus-signal power gain. An intensity-independent solid-angle value is expected at low intensities. At high intensities, such that the pump saturates the inversion, the solid angle is expected to decrease as γ−2, shown as a line with a slope of −2 on this log–log plot.

Fig. 3
Fig. 3

Decay of the incremental power gain at 633 nm in a Ti:A12O3 crystal from Ref. 1. The model gives an excellent fit to the decay with no parameters. The dashed line shows the decay curve when ASE is not included in the model.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d N ( x , t ) d t = - N ( x , t ) τ + σ p [ N 0 - N ( x , t ) ] I p h ν p - σ s I s h ν s N ( x , t ) - I ase h ν s σ s N ( x , t ) ,
d I p d x = - σ p [ N 0 - N ( x , t ) ] I p ,
d I s d x = σ s I s N ( x , t ) ,
± d I ase ± d x = σ s I ase ± N ( x , t ) + N ( x , t ) Ω ± ( x , t ) h ν s 4 π τ r ,
τ d γ d t = - γ - τ τ r Ω 2 π ( e γ - 1 - γ ) + I abs I sat ν s ν p - I in I sat ( e γ - 1 ) ,

Metrics