Abstract

A cw mirrorless oscillation is observed in a photorefractive LiNbO3:Cu crystal when the crystal is exposed to two nearly counterpropagating pump waves from an Ar+ laser. This oscillation is shown to result from a parametric vectorial six-beam interaction in a medium with a photovoltaic nonlinearity.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, D. Pepper, Opt. Lett. 1, 16 (1977).
    [Crossref] [PubMed]
  2. S. Odoulov, S. Slyssarenko, M. Soskin, Sov. J. Quantum Electron. 14, 589 (1984).
    [Crossref]
  3. N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, Ferroelectrics 22, 949 (1979).
    [Crossref]
  4. N. Kukhtarev, S. Odoulov, Sov. Phys. JETP Lett. 30, 4 (1979).
  5. B. Fisher, M. Cronin-Golomb, J. O. White, A. Yariv, Opt. Lett. 6, 519 (1981).
    [Crossref]
  6. B. Sturman, Sov. J. Quantum Electron. 10, 276 (1980).
    [Crossref]
  7. A. Novikov, S. Odoulov, O. Oleinik, B. Sturman, Ferroelectrics 75, 295 (1987).
    [Crossref]
  8. S. Odoulov, K. Belabaev, I. Kiseleva, Opt. Lett. 10, 31 (1985).
    [Crossref] [PubMed]
  9. I. Kanaev, V. Malinovski, B. Sturman, Sov. Phys. JETP 74, 1599 (1978).
  10. I. Kiseleva, V. Obukhovski, S. Odoulov, Sov. Solid State Phys. 28, 1673 (1986).

1987 (1)

A. Novikov, S. Odoulov, O. Oleinik, B. Sturman, Ferroelectrics 75, 295 (1987).
[Crossref]

1986 (1)

I. Kiseleva, V. Obukhovski, S. Odoulov, Sov. Solid State Phys. 28, 1673 (1986).

1985 (1)

1984 (1)

S. Odoulov, S. Slyssarenko, M. Soskin, Sov. J. Quantum Electron. 14, 589 (1984).
[Crossref]

1981 (1)

1980 (1)

B. Sturman, Sov. J. Quantum Electron. 10, 276 (1980).
[Crossref]

1979 (2)

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, Ferroelectrics 22, 949 (1979).
[Crossref]

N. Kukhtarev, S. Odoulov, Sov. Phys. JETP Lett. 30, 4 (1979).

1978 (1)

I. Kanaev, V. Malinovski, B. Sturman, Sov. Phys. JETP 74, 1599 (1978).

1977 (1)

Belabaev, K.

Cronin-Golomb, M.

Fisher, B.

Kanaev, I.

I. Kanaev, V. Malinovski, B. Sturman, Sov. Phys. JETP 74, 1599 (1978).

Kiseleva, I.

I. Kiseleva, V. Obukhovski, S. Odoulov, Sov. Solid State Phys. 28, 1673 (1986).

S. Odoulov, K. Belabaev, I. Kiseleva, Opt. Lett. 10, 31 (1985).
[Crossref] [PubMed]

Kukhtarev, N.

N. Kukhtarev, S. Odoulov, Sov. Phys. JETP Lett. 30, 4 (1979).

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, Ferroelectrics 22, 949 (1979).
[Crossref]

Malinovski, V.

I. Kanaev, V. Malinovski, B. Sturman, Sov. Phys. JETP 74, 1599 (1978).

Markov, V.

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, Ferroelectrics 22, 949 (1979).
[Crossref]

Novikov, A.

A. Novikov, S. Odoulov, O. Oleinik, B. Sturman, Ferroelectrics 75, 295 (1987).
[Crossref]

Obukhovski, V.

I. Kiseleva, V. Obukhovski, S. Odoulov, Sov. Solid State Phys. 28, 1673 (1986).

Odoulov, S.

A. Novikov, S. Odoulov, O. Oleinik, B. Sturman, Ferroelectrics 75, 295 (1987).
[Crossref]

I. Kiseleva, V. Obukhovski, S. Odoulov, Sov. Solid State Phys. 28, 1673 (1986).

S. Odoulov, K. Belabaev, I. Kiseleva, Opt. Lett. 10, 31 (1985).
[Crossref] [PubMed]

S. Odoulov, S. Slyssarenko, M. Soskin, Sov. J. Quantum Electron. 14, 589 (1984).
[Crossref]

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, Ferroelectrics 22, 949 (1979).
[Crossref]

N. Kukhtarev, S. Odoulov, Sov. Phys. JETP Lett. 30, 4 (1979).

Oleinik, O.

A. Novikov, S. Odoulov, O. Oleinik, B. Sturman, Ferroelectrics 75, 295 (1987).
[Crossref]

Pepper, D.

Slyssarenko, S.

S. Odoulov, S. Slyssarenko, M. Soskin, Sov. J. Quantum Electron. 14, 589 (1984).
[Crossref]

Soskin, M.

S. Odoulov, S. Slyssarenko, M. Soskin, Sov. J. Quantum Electron. 14, 589 (1984).
[Crossref]

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, Ferroelectrics 22, 949 (1979).
[Crossref]

Sturman, B.

A. Novikov, S. Odoulov, O. Oleinik, B. Sturman, Ferroelectrics 75, 295 (1987).
[Crossref]

B. Sturman, Sov. J. Quantum Electron. 10, 276 (1980).
[Crossref]

I. Kanaev, V. Malinovski, B. Sturman, Sov. Phys. JETP 74, 1599 (1978).

Vinetski, V.

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, Ferroelectrics 22, 949 (1979).
[Crossref]

White, J. O.

Yariv, A.

Ferroelectrics (2)

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, Ferroelectrics 22, 949 (1979).
[Crossref]

A. Novikov, S. Odoulov, O. Oleinik, B. Sturman, Ferroelectrics 75, 295 (1987).
[Crossref]

Opt. Lett. (3)

Sov. J. Quantum Electron. (2)

B. Sturman, Sov. J. Quantum Electron. 10, 276 (1980).
[Crossref]

S. Odoulov, S. Slyssarenko, M. Soskin, Sov. J. Quantum Electron. 14, 589 (1984).
[Crossref]

Sov. Phys. JETP (1)

I. Kanaev, V. Malinovski, B. Sturman, Sov. Phys. JETP 74, 1599 (1978).

Sov. Phys. JETP Lett. (1)

N. Kukhtarev, S. Odoulov, Sov. Phys. JETP Lett. 30, 4 (1979).

Sov. Solid State Phys. (1)

I. Kiseleva, V. Obukhovski, S. Odoulov, Sov. Solid State Phys. 28, 1673 (1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement for mirrorless oscillation study. (a) Only one extraordinary pump wave P enters the sample from the left; (b) two independent pump beams P and P′ are formed by the beam splitter and mirrors M1 and M2. The second pump wave P′ is formed within the sample owing to reflection from the rear surface. Neutral-density filters ND permit variation of the pump intensity ratio. LN:Cu, the lithium niobate sample.

Fig. 2
Fig. 2

Intensity distribution on screens SC1 and SC2 of Fig. 1. The central bright spot is the transmitted pump beam (extraordinary wave); the symmetric side spots are oscillation beams (ordinary waves). Pictures are overexposed to show conical light-induced scattering. (a) Both pump waves, P and P′, propagate in the plane containing the C axis. (b) The pump-wave intersection plane makes an angle of 10° with the sample C axis. The angle between the oscillation and pump beams is ~42°.

Fig. 3
Fig. 3

Output intensity of the oscillation beam, normalized by input intensity of its pump beam, as a function of the pump intensity ratio. Pump-beam intensities are 27 W/cm2 (filled circles) and 14 W/cm2 (open circles).

Fig. 4
Fig. 4

Calculated output oscillation-wave intensity dependence on coupling strength for different pump intensity ratios.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2 k P e = k 1 o + k 2 o ,             2 k P e = k 1 o + k 2 o ,
k P e + k P e = k 1 o + k 1 o = k 2 o + k 2 o ,
K = k 1 - k P = k P - k 2 = k P - k 1 = k 2 - k P .
( d d y + i 2 Δ k ) A 1 = D A P ,             ( d d y - i 2 Δ k ) A 2 * = - D A P * , ( d d y + i 2 Δ k ) A 1 * = D A P * ,             ( d d y - i 2 Δ k ) A 2 = - D A P , d d y A P = - D * A 1 + D A 2 ,             d d y A P = - D A 1 + D * A 2 ,
A 2 = - A 1 ,             A 2 = - A 1 .
d A 1 d y = D A P ,             d A P d y = - 2 D A 1 , d A 1 d y = D A P ,             d A P d y = - 2 D A 1 ,
A 1 , 2 ( 0 ) = 0 ,             A 1 , 2 ( l ) = 0 ,
Γ l = 1 [ 1 - 4 q ( 1 + q ) - 2 ( 1 - 2 I ) ] 1 / 2 × ln { 1 + [ 1 - 4 q ( 1 + q ) - 2 ( 1 - 2 I ) ] 1 / 2 1 - [ 1 - 4 q ( 1 + q ) - 2 ( 1 - 2 I ) ] 1 / 2 } ,

Metrics