Abstract

We report the real-time direct interference-term measurement for a two-wave-mixing experiment in photorefractive crystals. Knowledge of the interference term may provide information concerning diffraction efficiency, interference pattern-to-recorded hologram phase shift, and optical activity and anisotropic diffraction properties of these materials. This method comprises phase modulation of one of the interfering beams and synchronous detection of the first and second harmonics in the resulting output irradiance modulation. Simultaneous detection of both harmonics enables the measurement to be made even in strongly perturbed conditions, since one harmonic is used for measuring and the other is used for operating an active stabilization system. Experimental results for Bi12TiO20 are reported.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  2. A. Marrakchi, J. P. Huignard, P. Gunter, Appl. Phys. 24, 131 (1981).
    [CrossRef]
  3. S. I. Stepanov, T. G. Pencheva, V. V. Kulikov, Sov. Phys. Solid State 24, 675 (1982).
  4. J. Feinberg, D. Heimany, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
    [CrossRef]
  5. L. Cescato, J. Frejlich, Appl. Opt. 27, 1984 (1988).
    [CrossRef] [PubMed]
  6. A. A. Kamshilin, J. Frejlich, L. Cescato, Appl. Opt. 25, 2375 (1986).
    [CrossRef] [PubMed]
  7. D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
    [CrossRef]
  8. J. Frejlich, L. Cescato, G. F. Mendes, Appl. Opt. 27, 1967 (1988).
    [CrossRef] [PubMed]
  9. G. Hamel de Montchenault, B. Loiseaux, J. P. Huignard, Appl. Phys. Lett. 50, 1794 (1987).
    [CrossRef]
  10. G. Hamel de Montchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
    [CrossRef]

1988 (3)

1987 (1)

G. Hamel de Montchenault, B. Loiseaux, J. P. Huignard, Appl. Phys. Lett. 50, 1794 (1987).
[CrossRef]

1986 (1)

1982 (1)

S. I. Stepanov, T. G. Pencheva, V. V. Kulikov, Sov. Phys. Solid State 24, 675 (1982).

1981 (1)

A. Marrakchi, J. P. Huignard, P. Gunter, Appl. Phys. 24, 131 (1981).
[CrossRef]

1980 (1)

J. Feinberg, D. Heimany, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

1972 (1)

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

Amodei, J. J.

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

Cescato, L.

Feinberg, J.

J. Feinberg, D. Heimany, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Frejlich, J.

Gunter, P.

A. Marrakchi, J. P. Huignard, P. Gunter, Appl. Phys. 24, 131 (1981).
[CrossRef]

Hamel de Montchenault, G.

G. Hamel de Montchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
[CrossRef]

G. Hamel de Montchenault, B. Loiseaux, J. P. Huignard, Appl. Phys. Lett. 50, 1794 (1987).
[CrossRef]

Heimany, D.

J. Feinberg, D. Heimany, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Hellwarth, R. W.

J. Feinberg, D. Heimany, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Huignard, J. P.

G. Hamel de Montchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
[CrossRef]

G. Hamel de Montchenault, B. Loiseaux, J. P. Huignard, Appl. Phys. Lett. 50, 1794 (1987).
[CrossRef]

A. Marrakchi, J. P. Huignard, P. Gunter, Appl. Phys. 24, 131 (1981).
[CrossRef]

Kamshilin, A. A.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Kulikov, V. V.

S. I. Stepanov, T. G. Pencheva, V. V. Kulikov, Sov. Phys. Solid State 24, 675 (1982).

Loiseaux, B.

G. Hamel de Montchenault, B. Loiseaux, J. P. Huignard, Appl. Phys. Lett. 50, 1794 (1987).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Marrakchi, A.

A. Marrakchi, J. P. Huignard, P. Gunter, Appl. Phys. 24, 131 (1981).
[CrossRef]

Mendes, G. F.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Pencheva, T. G.

S. I. Stepanov, T. G. Pencheva, V. V. Kulikov, Sov. Phys. Solid State 24, 675 (1982).

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Staebler, D. L.

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

Stepanov, S. I.

S. I. Stepanov, T. G. Pencheva, V. V. Kulikov, Sov. Phys. Solid State 24, 675 (1982).

Tanguay, A. R.

J. Feinberg, D. Heimany, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (1)

A. Marrakchi, J. P. Huignard, P. Gunter, Appl. Phys. 24, 131 (1981).
[CrossRef]

Appl. Phys. Lett. (1)

G. Hamel de Montchenault, B. Loiseaux, J. P. Huignard, Appl. Phys. Lett. 50, 1794 (1987).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

J. Appl. Phys. (3)

J. Feinberg, D. Heimany, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

G. Hamel de Montchenault, J. P. Huignard, J. Appl. Phys. 63, 624 (1988).
[CrossRef]

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

Sov. Phys. Solid State (1)

S. I. Stepanov, T. G. Pencheva, V. V. Kulikov, Sov. Phys. Solid State 24, 675 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two-wave mixing scheme of interfering waves ∑1 and ∑2 at the recorded hologram. ∑1′ and ∑2′ are transmitted waves, and ∑1″ and ∑2″ are the self-diffracted waves. The recorded hologram and the interference pattern are ψ-phase shifted.

Fig. 2
Fig. 2

Transverse electro-optic configuration in a Bi12TiO20 crystal. The incident beams are linearly polarized with angle γ at the crystal’s entrance surface (referred to as the principal electro-optic x axis). The grating vector K is parallel to the [11̄0] crystal axis.

Fig. 3
Fig. 3

Dynamic holographic recording cycle for a Bi12TiO20 crystal. This shows the stabilized evolution of the I signal when the air-conditioning system in the laboratory is running.

Fig. 4
Fig. 4

Dynamic holographic recording cycle for a Bi12TiO20 crystal. This shows the nonstabilized evolution of the I signal when the air-conditioning system in the laboratory is running.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I R = I 1 + I 2 η - 2 I 1 I 2 η cos ( 2 α ) sin ψ ,
I R = I 1 + I 2 η - 2 I 1 I 2 η cos ( 2 α ) cos Φ ,
I R 0 = I 1 + I 2 η - 2 I 1 I 2 η cos ( 2 α ) cos ( Φ ) ,
I Ω = 2 ψ d I 1 I 2 η cos ( 2 α ) sin Φ
I 2 Ω = ( ψ d / 2 ) 2 2 I 1 I 2 η cos ( 2 α ) cos Φ .

Metrics