Abstract

A computer model of the explosive vaporization of single water droplets by pulsed CO2-laser radiation is compared with the relevant experiments. The model shows excellent quantitative agreement with the experiments, to our knowledge the first time such agreement has been observed. The importance of fluid mechanics during the pulse is demonstrated, and a second computer model illustrates how a spherically symmetric explosion can evolve even under conditions of nonuniform heating. The two models reconcile the differences between predictions made by Mie theory and observations of droplet heating.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Armstrong, A. Zardecki, J. Appl. Phys. 62, 4571 (1987).
    [Crossref]
  2. S. M. Chitanvis, J. Appl. Phys. 62, 4387 (1987).
    [Crossref]
  3. J. C. Carls, J. R. Brock, Aerosol Sci. Tech. 7, 79 (1987).
    [Crossref]
  4. P. Kafalas, J. Herrmann, Appl. Opt. 12, 772 (1973).
    [Crossref] [PubMed]
  5. F. D. Feiock, L. K. Goodwin, J. Appl. Phys. 43, 5061 (1972).
    [Crossref]
  6. J. Kestin, J. V. Sengers, B. Kamgar-Parsi, J. M. H. Levelt-Sengers, J. Phys. Chem. Ref. Data 13, 175 (1984).
    [Crossref]
  7. J. D. Pendleton, Appl. Opt. 24, 1631 (1985).
    [Crossref] [PubMed]
  8. A. P. Prishivalko, Sov. Phys. J. 26, 149 (1983).
    [Crossref]
  9. J. C. Carls, J. R. Brock, Opt. Lett. 13, 273 (1988).
    [Crossref] [PubMed]

1988 (1)

1987 (3)

R. L. Armstrong, A. Zardecki, J. Appl. Phys. 62, 4571 (1987).
[Crossref]

S. M. Chitanvis, J. Appl. Phys. 62, 4387 (1987).
[Crossref]

J. C. Carls, J. R. Brock, Aerosol Sci. Tech. 7, 79 (1987).
[Crossref]

1985 (1)

1984 (1)

J. Kestin, J. V. Sengers, B. Kamgar-Parsi, J. M. H. Levelt-Sengers, J. Phys. Chem. Ref. Data 13, 175 (1984).
[Crossref]

1983 (1)

A. P. Prishivalko, Sov. Phys. J. 26, 149 (1983).
[Crossref]

1973 (1)

1972 (1)

F. D. Feiock, L. K. Goodwin, J. Appl. Phys. 43, 5061 (1972).
[Crossref]

Armstrong, R. L.

R. L. Armstrong, A. Zardecki, J. Appl. Phys. 62, 4571 (1987).
[Crossref]

Brock, J. R.

J. C. Carls, J. R. Brock, Opt. Lett. 13, 273 (1988).
[Crossref] [PubMed]

J. C. Carls, J. R. Brock, Aerosol Sci. Tech. 7, 79 (1987).
[Crossref]

Carls, J. C.

J. C. Carls, J. R. Brock, Opt. Lett. 13, 273 (1988).
[Crossref] [PubMed]

J. C. Carls, J. R. Brock, Aerosol Sci. Tech. 7, 79 (1987).
[Crossref]

Chitanvis, S. M.

S. M. Chitanvis, J. Appl. Phys. 62, 4387 (1987).
[Crossref]

Feiock, F. D.

F. D. Feiock, L. K. Goodwin, J. Appl. Phys. 43, 5061 (1972).
[Crossref]

Goodwin, L. K.

F. D. Feiock, L. K. Goodwin, J. Appl. Phys. 43, 5061 (1972).
[Crossref]

Herrmann, J.

Kafalas, P.

Kamgar-Parsi, B.

J. Kestin, J. V. Sengers, B. Kamgar-Parsi, J. M. H. Levelt-Sengers, J. Phys. Chem. Ref. Data 13, 175 (1984).
[Crossref]

Kestin, J.

J. Kestin, J. V. Sengers, B. Kamgar-Parsi, J. M. H. Levelt-Sengers, J. Phys. Chem. Ref. Data 13, 175 (1984).
[Crossref]

Levelt-Sengers, J. M. H.

J. Kestin, J. V. Sengers, B. Kamgar-Parsi, J. M. H. Levelt-Sengers, J. Phys. Chem. Ref. Data 13, 175 (1984).
[Crossref]

Pendleton, J. D.

Prishivalko, A. P.

A. P. Prishivalko, Sov. Phys. J. 26, 149 (1983).
[Crossref]

Sengers, J. V.

J. Kestin, J. V. Sengers, B. Kamgar-Parsi, J. M. H. Levelt-Sengers, J. Phys. Chem. Ref. Data 13, 175 (1984).
[Crossref]

Zardecki, A.

R. L. Armstrong, A. Zardecki, J. Appl. Phys. 62, 4571 (1987).
[Crossref]

Aerosol Sci. Tech. (1)

J. C. Carls, J. R. Brock, Aerosol Sci. Tech. 7, 79 (1987).
[Crossref]

Appl. Opt. (2)

J. Appl. Phys. (3)

R. L. Armstrong, A. Zardecki, J. Appl. Phys. 62, 4571 (1987).
[Crossref]

S. M. Chitanvis, J. Appl. Phys. 62, 4387 (1987).
[Crossref]

F. D. Feiock, L. K. Goodwin, J. Appl. Phys. 43, 5061 (1972).
[Crossref]

J. Phys. Chem. Ref. Data (1)

J. Kestin, J. V. Sengers, B. Kamgar-Parsi, J. M. H. Levelt-Sengers, J. Phys. Chem. Ref. Data 13, 175 (1984).
[Crossref]

Opt. Lett. (1)

Sov. Phys. J. (1)

A. P. Prishivalko, Sov. Phys. J. 26, 149 (1983).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of experimental (triangles) and computed shock position (solid line) as a function of time for water droplets exploding under laser irradiation. Each triangle represents the measurement of one shock position from a single droplet (see Ref. 1). The curve was computed using no adjustable parameters. The pulse and droplet characteristics for the model and the experiment are listed in Table 1. The irradiance in the model was 44.4 MW/cm2.

Fig. 2
Fig. 2

Source function showing nonuniform electromagnetic energy distribution for a 50-μm-diameter water droplet irradiated by unpolarized 10.6-μm laser radiation (see Refs. 7 and 8).

Fig. 3
Fig. 3

Schematic of model used to investigate symmetric explosions arising from asymmetric heating. A high-density slab is irradiated from one side by a laser. Beer’s law describes the absorption, and the radiation attenuates as it traverses the slab. I0 and I(x) are the initial laser irradiance and the irradiance as a function of position, respectively.

Fig. 4
Fig. 4

Comparison of laser-induced explosion of water slabs of (a) 50-μm thickness and (b) 37.5-μm thickness. The pulse is identical to that used in Fig. 1. Each figure shows the time evolution of the density. The initial motion is asymmetric in each case because of nonuniform heating. In (a) asymmetry persists throughout the flow history. In (b), however, the smaller thickness allows symmetric motion to develop because of the influence of fluid flow on the absorption.

Tables (1)

Tables Icon

Table 1 Parameters for the Experiment and the Model

Metrics