Abstract

Doubly resonant four-wave mixing has been used with two lasers set for resonance with the two Na D-line transitions to perform elemental analysis with a Na-seeded flame. The method is analogous to phase-conjugation methods where all lasers have the same frequency. Strong saturation effects and dynamic Stark splittings are observed and used to optimize the mixing efficiency. A nonperturbative theory is presented and shown to describe the experimental results.

© 1988 Optical Society of America

Full Article  |  PDF Article
Related Articles
Effects of population pulsations on backward, nearly degenerate four-wave mixing spectroscopy and optical phase conjugation

D. G. Steel, J. Remillard, Jing Liu, and S. C. Rand
J. Opt. Soc. Am. B 5(1) 171-179 (1988)

Saturation effects in gas-phase degenerate four-wave mixing spectroscopy: nonperturbative calculations

Robert P. Lucht, Roger L. Farrow, and David J. Rakestraw
J. Opt. Soc. Am. B 10(9) 1508-1520 (1993)

Subharmonic resonances in higher-order collision-enhanced wave mixing in a sodium-seeded flame

Rick Trebino and Larry A. Rahn
Opt. Lett. 12(11) 912-914 (1987)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription