Abstract

A new method to realize a medium-scale, free-space optical programmable logic array is proposed. By using either a two-dimensional optical spatial light modulator or an array of one-dimensional spatial light modulators inside a lens-based multiple-beam-path cavity, an array of optical multiple-variable logic product terms is generated. This device, together with a programmable multiple-variable or matrix, can be used to implement any Boolean combinatorial logic operations. For an optical binary combinatorial logic computation, the proposed method efficiently uses three-dimensional space and optical elements. Preliminary experimental results obtained using an inexpensive liquid-crystal television are included.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Davio, J.-P. Deschamps, A. Thayse, Digital Systems with Algorithm Implementation (Wiley, New York, 1983), Chap. 3.
  2. R. Arrathoon, S. Kozaitis, Proc. Soc. Photo-Opt. Instrum. Eng. 752, 34 (1987).
  3. R. Arrathoon, S. Kozaitis, Opt. Lett. 12, 956 (1987).
    [CrossRef] [PubMed]
  4. J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, J. Opt. Soc. Am. A 2, 8 (1985).
  5. M. Young, Appl. Opt. 25, 1024 (1986).
    [CrossRef] [PubMed]
  6. F. T. S. Yu, S. Jutamulia, D. A. Gregory, Opt. Lett. 12, 1050 (1987).
    [CrossRef] [PubMed]
  7. J. S. Yoon, S. S. Lee, Appl. Opt. 24, 3429 (1985).
    [CrossRef] [PubMed]
  8. Y. Li, G. Eichmann, Opt. Lett. 11, 718 (1986).
    [CrossRef] [PubMed]
  9. M. M. Mirsalehi, T. K. Gaylord, Appl. Opt. 25, 2277 (1986).
    [CrossRef] [PubMed]
  10. H. K. Liu, J. A. Davis, R. A. Lilly, Opt. Lett. 10, 635 (1985).
    [CrossRef] [PubMed]
  11. D. Casasent, S. F. Xia, Opt. Lett. 11, 398 (1986).
    [CrossRef] [PubMed]
  12. Y. Suzuki, T. Hara, Y. Ooi, M. H. Wu, “Optical transfer characteristics of microchannel spatial light modulator,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 245 (1988).

1988 (1)

Y. Suzuki, T. Hara, Y. Ooi, M. H. Wu, “Optical transfer characteristics of microchannel spatial light modulator,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 245 (1988).

1987 (3)

1986 (4)

1985 (3)

Arrathoon, R.

R. Arrathoon, S. Kozaitis, Proc. Soc. Photo-Opt. Instrum. Eng. 752, 34 (1987).

R. Arrathoon, S. Kozaitis, Opt. Lett. 12, 956 (1987).
[CrossRef] [PubMed]

Casasent, D.

Davio, M.

M. Davio, J.-P. Deschamps, A. Thayse, Digital Systems with Algorithm Implementation (Wiley, New York, 1983), Chap. 3.

Davis, J. A.

Deschamps, J.-P.

M. Davio, J.-P. Deschamps, A. Thayse, Digital Systems with Algorithm Implementation (Wiley, New York, 1983), Chap. 3.

Eichmann, G.

Fisher, A. D.

J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, J. Opt. Soc. Am. A 2, 8 (1985).

Gaylord, T. K.

Gregory, D. A.

Hara, T.

Y. Suzuki, T. Hara, Y. Ooi, M. H. Wu, “Optical transfer characteristics of microchannel spatial light modulator,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 245 (1988).

Jutamulia, S.

Kozaitis, S.

R. Arrathoon, S. Kozaitis, Opt. Lett. 12, 956 (1987).
[CrossRef] [PubMed]

R. Arrathoon, S. Kozaitis, Proc. Soc. Photo-Opt. Instrum. Eng. 752, 34 (1987).

Lee, J. N.

J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, J. Opt. Soc. Am. A 2, 8 (1985).

Lee, S. S.

Li, Y.

Lilly, R. A.

Liu, H. K.

McEwan, J. A.

J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, J. Opt. Soc. Am. A 2, 8 (1985).

Mirsalehi, M. M.

Ooi, Y.

Y. Suzuki, T. Hara, Y. Ooi, M. H. Wu, “Optical transfer characteristics of microchannel spatial light modulator,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 245 (1988).

Rolsma, P. B.

J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, J. Opt. Soc. Am. A 2, 8 (1985).

Suzuki, Y.

Y. Suzuki, T. Hara, Y. Ooi, M. H. Wu, “Optical transfer characteristics of microchannel spatial light modulator,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 245 (1988).

Thayse, A.

M. Davio, J.-P. Deschamps, A. Thayse, Digital Systems with Algorithm Implementation (Wiley, New York, 1983), Chap. 3.

Wu, M. H.

Y. Suzuki, T. Hara, Y. Ooi, M. H. Wu, “Optical transfer characteristics of microchannel spatial light modulator,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 245 (1988).

Xia, S. F.

Yoon, J. S.

Young, M.

Yu, F. T. S.

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

J. A. McEwan, A. D. Fisher, P. B. Rolsma, J. N. Lee, J. Opt. Soc. Am. A 2, 8 (1985).

Opt. Lett. (5)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

Y. Suzuki, T. Hara, Y. Ooi, M. H. Wu, “Optical transfer characteristics of microchannel spatial light modulator,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 245 (1988).

R. Arrathoon, S. Kozaitis, Proc. Soc. Photo-Opt. Instrum. Eng. 752, 34 (1987).

Other (1)

M. Davio, J.-P. Deschamps, A. Thayse, Digital Systems with Algorithm Implementation (Wiley, New York, 1983), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of a two-step programmable logic array. The N inputs are selected by N inverters to generate the required inputs to an and matrix (a crossbar). This crossbar switching network can be programmed to connect the selected input and output channels to generate the multiple-variable product terms. These product term outputs are then guided into an or matrix that selects, for each programmable logic array output channel, the required multiple-variable or result.

Fig. 2
Fig. 2

Transmissive SLM-based optical multiple-variable logic product term generator. To form a multiple-beam-path cavity, a noncoaxial lens-based 4F system is used. D (F), the lens aperture (focal length); Δ, the lateral shift of the lens axes, M1 and M2, end mirrors; SF1 and SF2, spatial filters; L1 and L2, Fourier lenses.

Fig. 3
Fig. 3

Reflective SLM-based optical multiple-variable logic product term generator. PBS, polarizing beam splitter; P, polarizers; SF1 and SF2, spatial filters; M1 and M2, end mirrors; L1–L3, lenses. The input and output polarizations are mutually orthogonal.

Fig. 4
Fig. 4

Schematic OPLA with optical programmable and and or matrices. For the and matrix, SLM, is sandwiched between two cylindrical lenses, CL1 and CL2, and two end mirrors, M1 and M2. Using a beam-splitter array, the and outputs are split, then switched To form the final by SLM2. OPLA outputs, the switched outputs are collected by cylindrical lens CL3.

Fig. 5
Fig. 5

Results of the proposed OPLA obtained at different processing planes. (a) The three activated four-variable and results at the and array output, (b) duplicated results of (a) to be used for or array processing, (c) the selected signals to be separately ored, and (d) the three or channel results at a slightly defocused OPLA output plane.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ = D N - 2             for N = an even number ,
f 1 = x ¯ 1 x ¯ 2 x ¯ 3 x ¯ 4 , f 2 = x ¯ 1 x 2 x ¯ 3 x 4 , f 3 = x 1 x ¯ 2 x 3 x ¯ 4 , f 4 = x ¯ 1 x 2 x 3 x ¯ 4 , f 5 = x 1 x 2 x 3 x 4 .
N = log ( t r K P out / P in ) log ( t s t p t r ) .

Metrics