Abstract

We describe a novel procedure for obtaining enhanced nondestructive holographic readout in SBN, where the key new ingredient is utilization of degrees of freedom in polarization of the reconstruction beam. The effect also involves spatial frequency and the applied voltage during both the recording and the reconstruction. The reconstructed beam first drops in intensity but subsequently grows in strength above the starting value, approaching 100% efficiency in some cases. More than 6 h of continuous readout has been achieved, with efficiency remaining strong enough to give more than 109 10-μsec readouts with signal-to-noise ratios exceeding 20 dB.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Smith, Holographic Recording Materials (Springer-Verlag, New York, 1977).
    [CrossRef]
  2. R. Fisher, Optical Phase Conjugation (Academic, New York, 1983).
  3. F. Micheron, G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).
    [CrossRef]
  4. D. L. Staebler, Appl. Phys. Lett. 26, 182 (1975).
    [CrossRef]
  5. T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
    [CrossRef]

1985 (1)

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

1975 (1)

D. L. Staebler, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

1972 (1)

F. Micheron, G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).
[CrossRef]

Bismuth, G.

F. Micheron, G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).
[CrossRef]

Connors, L. M.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Fisher, R.

R. Fisher, Optical Phase Conjugation (Academic, New York, 1983).

Foote, P. D.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Hall, T. J.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Jaura, R.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Micheron, F.

F. Micheron, G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).
[CrossRef]

Smith, H.

H. Smith, Holographic Recording Materials (Springer-Verlag, New York, 1977).
[CrossRef]

Staebler, D. L.

D. L. Staebler, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Appl. Phys. Lett. (2)

F. Micheron, G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).
[CrossRef]

D. L. Staebler, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Prog. Quantum Electron. (1)

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Other (2)

H. Smith, Holographic Recording Materials (Springer-Verlag, New York, 1977).
[CrossRef]

R. Fisher, Optical Phase Conjugation (Academic, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of hologram recording and reconstruction apparatus used. ND, neutral density; BS, beam splitter.

Fig. 2
Fig. 2

Plot of the recording–reconstruction process for the preferred SBN:60 form (excluding recording energy). Solid line, reconstruction efficiency versus cumulative recording energy density [curve (a)]; thinner, broken lines, a family of reconstruction history or read-destruct curves for various amounts of cumulative recording energy at conclusion of recording: curve (b), 0.30 mJ/mm2; curve (c), 0.60 mJ/mm2; curve (d), 2.10 mJ/mm2; curve (e), 3.01 mJ/mm2; curve (f), 6.02 mJ/mm2. The write power was 9.45 mW, and the read power was 0.164 mW. In all cases the beam diameter was 2 mm.

Fig. 3
Fig. 3

Graphic representation of reconstruction efficiency versus cumulative time, showing a family of curves for various combinations of ordinary (v) and extraordinary (h) polarization for recording and reconstruction beams: curve (a), ordinary recording and extraordinary reconstruction; curve (b), ordinary recording and ordinary reconstruction; curve (c), extraordinary recording and extraordinary reconstruction; curve (d), extraordinary recording and ordinary reconstruction, for the preferred SBN:60 form. In all cases the read power was 9.45 mW, the beam diameter was 2 mm, and the read power density was ~1 mW/mm2.

Fig. 4
Fig. 4

Graphic representation of the efficiency of reconstruction beam versus spatial frequency for various combinations of polarization states (e.g., v–h means ordinary polarization for recording beams and extraordinary polarization for reconstruction beams) for the recording and reconstruction beams using the preferred SBN:60 form (excluding spatial frequency). Both initial efficiency (h–v, v–v, h–h, and v–h) and, in the case where a recording grew, peak efficiency are shown (h–h peak and v–h peak).

Fig. 5
Fig. 5

Photograph of a nondestructive reconstruction of a U.S. Air Force RES 1 test pattern showing the quality of the reconstructed image.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ g ( 1 + θ 2 ν 2 ) 2 + ( θ 2 ν E a ) 2 ( 1 + θ 2 ν 2 ) τ c ,
E ( t ) = A e - η t + B e - η t 0 t e η r f ( r ) d r , E sc ( t ) = E A + const . [ E exp ( i k · x ) + E * exp ( - i k · x ] ,

Metrics