Abstract

We describe what are to our knowledge the first photorefractive holographic recordings in a fiber. A plane-wave reference and an image-carrying object beam are incident upon the fiber in a reflection geometry. We report results on the angular sensitivity of the recordings, the image quality, and readout efficiency as a function of the reference-wave input angle when the object wave propagates along the bore of the fiber. These experiments are carried out for two relatively short, 4- and 8-mm, multimode 1-mm-diameter fibers. The results suggest that an array of fibers might favorably replace bulk materials for certain computer and signal-processing applications.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Smith, Holographic Recording Materials (Springer-Verlag, New York, 1977).
    [CrossRef]
  2. E. Ochoa, L. Hesselink, J. Goodman, Appl. Opt. 24, 1826 (1985).
    [CrossRef] [PubMed]
  3. R. A. Fisher, Optical Phase Conjugation (Academic, New York, 1983).
  4. J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Proc. Soc. Photo-Opt. Instrum. Eng. 752, 200 (1986).
  5. B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, Opt. Lett. 11, 118 (1986).
    [CrossRef] [PubMed]
  6. A. Yariv, J. AuYeung, D. Fekete, D. M. Pepper, Appl. Phys. Lett. 32, 635 (1978).
    [CrossRef]
  7. J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, Opt. Lett. 4, 42 (1979).
    [CrossRef] [PubMed]
  8. Y. Huang, L. Hesselink, “Fibers of SBN,” Opt. Eng. (to be published).
  9. W. A. Gambling, Appl. Opt. 14, 1538 (1985).
    [CrossRef]
  10. H. Kogelnik, Bell Syst. Tech. J. 58, 2909 (1969).
  11. F. Vachss, L. Hesselink, J. Opt. Soc. Am. A 4, 325 (1987).
    [CrossRef]

1987 (1)

1986 (2)

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Proc. Soc. Photo-Opt. Instrum. Eng. 752, 200 (1986).

B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, Opt. Lett. 11, 118 (1986).
[CrossRef] [PubMed]

1985 (2)

1979 (1)

1978 (1)

A. Yariv, J. AuYeung, D. Fekete, D. M. Pepper, Appl. Phys. Lett. 32, 635 (1978).
[CrossRef]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 58, 2909 (1969).

AuYeung, J.

J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, Opt. Lett. 4, 42 (1979).
[CrossRef] [PubMed]

A. Yariv, J. AuYeung, D. Fekete, D. M. Pepper, Appl. Phys. Lett. 32, 635 (1978).
[CrossRef]

Dunning, G. J.

Fekete, D.

J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, Opt. Lett. 4, 42 (1979).
[CrossRef] [PubMed]

A. Yariv, J. AuYeung, D. Fekete, D. M. Pepper, Appl. Phys. Lett. 32, 635 (1978).
[CrossRef]

Fisher, R. A.

R. A. Fisher, Optical Phase Conjugation (Academic, New York, 1983).

Gambling, W. A.

Goodman, J.

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Proc. Soc. Photo-Opt. Instrum. Eng. 752, 200 (1986).

E. Ochoa, L. Hesselink, J. Goodman, Appl. Opt. 24, 1826 (1985).
[CrossRef] [PubMed]

Hesselink, L.

F. Vachss, L. Hesselink, J. Opt. Soc. Am. A 4, 325 (1987).
[CrossRef]

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Proc. Soc. Photo-Opt. Instrum. Eng. 752, 200 (1986).

E. Ochoa, L. Hesselink, J. Goodman, Appl. Opt. 24, 1826 (1985).
[CrossRef] [PubMed]

Y. Huang, L. Hesselink, “Fibers of SBN,” Opt. Eng. (to be published).

Huang, Y.

Y. Huang, L. Hesselink, “Fibers of SBN,” Opt. Eng. (to be published).

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 58, 2909 (1969).

Marom, E.

McRuer, R.

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Proc. Soc. Photo-Opt. Instrum. Eng. 752, 200 (1986).

Ochoa, E.

Owechko, Y.

Pepper, D. M.

J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, Opt. Lett. 4, 42 (1979).
[CrossRef] [PubMed]

A. Yariv, J. AuYeung, D. Fekete, D. M. Pepper, Appl. Phys. Lett. 32, 635 (1978).
[CrossRef]

Smith, H.

H. Smith, Holographic Recording Materials (Springer-Verlag, New York, 1977).
[CrossRef]

Soffer, B. H.

Vachss, F.

Wilde, J.

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Proc. Soc. Photo-Opt. Instrum. Eng. 752, 200 (1986).

Yariv, A.

J. AuYeung, D. Fekete, D. M. Pepper, A. Yariv, Opt. Lett. 4, 42 (1979).
[CrossRef] [PubMed]

A. Yariv, J. AuYeung, D. Fekete, D. M. Pepper, Appl. Phys. Lett. 32, 635 (1978).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Yariv, J. AuYeung, D. Fekete, D. M. Pepper, Appl. Phys. Lett. 32, 635 (1978).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 58, 2909 (1969).

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, Proc. Soc. Photo-Opt. Instrum. Eng. 752, 200 (1986).

Other (3)

Y. Huang, L. Hesselink, “Fibers of SBN,” Opt. Eng. (to be published).

H. Smith, Holographic Recording Materials (Springer-Verlag, New York, 1977).
[CrossRef]

R. A. Fisher, Optical Phase Conjugation (Academic, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental arrangement. The fiber is mounted on a stepper motor, allowing it to rotate about an axis through the point where the reference beam strikes the fiber and perpendicular to plane of the figure. ND, neutral density; BS, beam splitter.

Fig. 2
Fig. 2

Plot of the saturation and read destruct curve for various recording configurations. Curve a, ordinary light, readout beam parallel to the direction of poling; curve b, extraordinary and parallel; curve c, ordinary and antiparallel; curve d, extraordinary and antiparallel.

Fig. 3
Fig. 3

Bragg-angle selectivity during reconstruction for recordings at different off-axis angles of the reference beam. The 0° curve corresponds to an on-axis recording, the 5° curve to a 5° off-axis reference beam recording, and so forth. Relative efficiency is with respect to the on-Bragg efficiency.

Fig. 4
Fig. 4

Reconstruction of a recording in a fiber of a U.S. Air Force RES 1 test pattern.

Fig. 5
Fig. 5

Schematic drawing of K-vector closure for interference between a plane object beam and a converging reference beam. The two rays shown are located in the K1 = 0 plane. The black ellipse on the perimeter denotes the angular sensitivity for the extreme rays in the beam (the shaded cone), and the cone in the center represents the angular sensitivity for rays propagating close to the axis. The drawing is not to scale.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ λ / ( D sin ϕ ) ,

Metrics