Abstract

The transient grating technique is used to demonstrate how the temporal response of four-wave mixing in multiple-quantum-well structures depends on sample orientation. Variation of the decay times associated with the short-period grating in a phase-conjugate geometry between 40 and 500 psec is demonstrated in a GaAs/AlGaAs multiple-quantum-well structure and interpreted in terms of the large anisotropy in the carrier diffusion.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984).
    [CrossRef]
  2. Y. H. Lee, A. Chivez-Pirson, B. K. Rhee, H. M. Gibbs, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 49, 1505 (1986).
    [CrossRef]
  3. W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla, C. V. Shank, Phys. Rev. Lett. 56, 1191 (1986).
    [CrossRef] [PubMed]
  4. R. J. Manning, D. W. Crust, D. W. Craig, A. Miller, K. Woodbridge, J. Mod. Opt. 35, 541 (1988).
    [CrossRef]
  5. R. K. Jain, R. C. Lind, J. Opt. Soc. Am. 73, 647 (1983).
    [CrossRef]

1988

R. J. Manning, D. W. Crust, D. W. Craig, A. Miller, K. Woodbridge, J. Mod. Opt. 35, 541 (1988).
[CrossRef]

1986

Y. H. Lee, A. Chivez-Pirson, B. K. Rhee, H. M. Gibbs, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 49, 1505 (1986).
[CrossRef]

W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla, C. V. Shank, Phys. Rev. Lett. 56, 1191 (1986).
[CrossRef] [PubMed]

1984

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984).
[CrossRef]

1983

Chemla, D. S.

W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla, C. V. Shank, Phys. Rev. Lett. 56, 1191 (1986).
[CrossRef] [PubMed]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984).
[CrossRef]

Chivez-Pirson, A.

Y. H. Lee, A. Chivez-Pirson, B. K. Rhee, H. M. Gibbs, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 49, 1505 (1986).
[CrossRef]

Craig, D. W.

R. J. Manning, D. W. Crust, D. W. Craig, A. Miller, K. Woodbridge, J. Mod. Opt. 35, 541 (1988).
[CrossRef]

Crust, D. W.

R. J. Manning, D. W. Crust, D. W. Craig, A. Miller, K. Woodbridge, J. Mod. Opt. 35, 541 (1988).
[CrossRef]

Gibbs, H. M.

Y. H. Lee, A. Chivez-Pirson, B. K. Rhee, H. M. Gibbs, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 49, 1505 (1986).
[CrossRef]

Gossard, A. C.

Y. H. Lee, A. Chivez-Pirson, B. K. Rhee, H. M. Gibbs, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 49, 1505 (1986).
[CrossRef]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984).
[CrossRef]

Hirlimann, C.

W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla, C. V. Shank, Phys. Rev. Lett. 56, 1191 (1986).
[CrossRef] [PubMed]

Jain, R. K.

Knox, W. H.

W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla, C. V. Shank, Phys. Rev. Lett. 56, 1191 (1986).
[CrossRef] [PubMed]

Lee, Y. H.

Y. H. Lee, A. Chivez-Pirson, B. K. Rhee, H. M. Gibbs, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 49, 1505 (1986).
[CrossRef]

Lind, R. C.

Manning, R. J.

R. J. Manning, D. W. Crust, D. W. Craig, A. Miller, K. Woodbridge, J. Mod. Opt. 35, 541 (1988).
[CrossRef]

Miller, A.

R. J. Manning, D. W. Crust, D. W. Craig, A. Miller, K. Woodbridge, J. Mod. Opt. 35, 541 (1988).
[CrossRef]

Miller, D. A. B.

W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla, C. V. Shank, Phys. Rev. Lett. 56, 1191 (1986).
[CrossRef] [PubMed]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984).
[CrossRef]

Rhee, B. K.

Y. H. Lee, A. Chivez-Pirson, B. K. Rhee, H. M. Gibbs, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 49, 1505 (1986).
[CrossRef]

Shah, J.

W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla, C. V. Shank, Phys. Rev. Lett. 56, 1191 (1986).
[CrossRef] [PubMed]

Shank, C. V.

W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla, C. V. Shank, Phys. Rev. Lett. 56, 1191 (1986).
[CrossRef] [PubMed]

Smith, P. W.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984).
[CrossRef]

Wiegmann, W.

Y. H. Lee, A. Chivez-Pirson, B. K. Rhee, H. M. Gibbs, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 49, 1505 (1986).
[CrossRef]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984).
[CrossRef]

Woodbridge, K.

R. J. Manning, D. W. Crust, D. W. Craig, A. Miller, K. Woodbridge, J. Mod. Opt. 35, 541 (1988).
[CrossRef]

Appl. Phys. Lett.

Y. H. Lee, A. Chivez-Pirson, B. K. Rhee, H. M. Gibbs, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 49, 1505 (1986).
[CrossRef]

IEEE J. Quantum Electron.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265 (1984).
[CrossRef]

J. Mod. Opt.

R. J. Manning, D. W. Crust, D. W. Craig, A. Miller, K. Woodbridge, J. Mod. Opt. 35, 541 (1988).
[CrossRef]

J. Opt. Soc. Am.

Phys. Rev. Lett.

W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla, C. V. Shank, Phys. Rev. Lett. 56, 1191 (1986).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transient grating configurations. (a) Forward-traveling geometry. (b) Counterpropagating geometry. (c) An illustration of how the quantum wells are positioned relative to the standing-wave intensity maxima at some rotation of the sample θ in case (b). MQW, multiple quantum well.

Fig. 2
Fig. 2

Diffracted signal decay rates measured in the forward-traveling configuration at different grating spacings Λ by altering the angle of the excite beams ϕ.

Fig. 3
Fig. 3

Diffracted signal decay rates measured in the counterpropagating configuration for different rotations θ of the sample from the normal.

Fig. 4
Fig. 4

Measured signal decay rates as a function of the angle. The solid line gives the predicted rate for purely intrawell diffusion from the forward-traveling measurements (Fig. 2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r = 8 π 2 D a Λ 2 + 2 τ R ,
r = 8 π 2 D a sin 2 θ n 2 Λ 2 + 2 τ + 2 τ R ,

Metrics