Abstract

Optical nonlinearties of AlxGa1−xAs/GaAs asymmetric coupled quantum wells within a p-i-n structure have been observed by using time-resolved spectroscopy. Under photoexcitation, exciton absorption lines exhibit spectral shifts of as much as ≈1 meV. The recovery times of these spectral shifts are of the order of hundreds of picoseconds when the excitation photon is above the lowest exciton state but become less than 10 psec when excitation is below the lowest exciton state, indicating a virtual process. The behavior of these spectral shifts is consistent with the presence of a polarization induced by optical pumping. The polarization is believed to be due to the excitons that have nonvanishing electric dipole moments along the axis of the asymmetric coupled quantum wells.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986).
    [CrossRef] [PubMed]
  2. A. Von Lehmen, D. S. Chemla, J. E. Zucker, J. P. Heritage, Opt. Lett. 11, 609 (1986).
    [CrossRef] [PubMed]
  3. S. Schmitt-Rink, D. S. Chemla, Phys. Rev. Lett. 57, 2752 (1986).
    [CrossRef] [PubMed]
  4. M. Yamanishi, Phys. Rev. Lett. 59, 1014 (1987).
    [CrossRef] [PubMed]
  5. D. S. Chemla, D. A. B. Miller, S. Schmitt-Rink, Phys. Rev. Lett. 59, 1018 (1987).
    [CrossRef] [PubMed]
  6. H. Q. Le, J. J. Zayhowski, W. D. Goodhue, J. Bales, in GaAs and Related Compounds 1986, W. T. Lindley, ed. (Institute of Physics, Bristol, England, 1987); H. Q. Le, J. J. Zayhowski, W. D. Goodhue, Appl. Phys. Lett. 50, 1518 (1987).
    [CrossRef]
  7. See, for example, J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 141.

1987 (2)

M. Yamanishi, Phys. Rev. Lett. 59, 1014 (1987).
[CrossRef] [PubMed]

D. S. Chemla, D. A. B. Miller, S. Schmitt-Rink, Phys. Rev. Lett. 59, 1018 (1987).
[CrossRef] [PubMed]

1986 (3)

A. Von Lehmen, D. S. Chemla, J. E. Zucker, J. P. Heritage, Opt. Lett. 11, 609 (1986).
[CrossRef] [PubMed]

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986).
[CrossRef] [PubMed]

S. Schmitt-Rink, D. S. Chemla, Phys. Rev. Lett. 57, 2752 (1986).
[CrossRef] [PubMed]

Antonetti, A.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986).
[CrossRef] [PubMed]

Bales, J.

H. Q. Le, J. J. Zayhowski, W. D. Goodhue, J. Bales, in GaAs and Related Compounds 1986, W. T. Lindley, ed. (Institute of Physics, Bristol, England, 1987); H. Q. Le, J. J. Zayhowski, W. D. Goodhue, Appl. Phys. Lett. 50, 1518 (1987).
[CrossRef]

Chemla, D. S.

D. S. Chemla, D. A. B. Miller, S. Schmitt-Rink, Phys. Rev. Lett. 59, 1018 (1987).
[CrossRef] [PubMed]

S. Schmitt-Rink, D. S. Chemla, Phys. Rev. Lett. 57, 2752 (1986).
[CrossRef] [PubMed]

A. Von Lehmen, D. S. Chemla, J. E. Zucker, J. P. Heritage, Opt. Lett. 11, 609 (1986).
[CrossRef] [PubMed]

Goodhue, W. D.

H. Q. Le, J. J. Zayhowski, W. D. Goodhue, J. Bales, in GaAs and Related Compounds 1986, W. T. Lindley, ed. (Institute of Physics, Bristol, England, 1987); H. Q. Le, J. J. Zayhowski, W. D. Goodhue, Appl. Phys. Lett. 50, 1518 (1987).
[CrossRef]

Heritage, J. P.

Hulin, D.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986).
[CrossRef] [PubMed]

Jackson, J. D.

See, for example, J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 141.

Le, H. Q.

H. Q. Le, J. J. Zayhowski, W. D. Goodhue, J. Bales, in GaAs and Related Compounds 1986, W. T. Lindley, ed. (Institute of Physics, Bristol, England, 1987); H. Q. Le, J. J. Zayhowski, W. D. Goodhue, Appl. Phys. Lett. 50, 1518 (1987).
[CrossRef]

Masselink, W. T.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986).
[CrossRef] [PubMed]

Migus, A.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986).
[CrossRef] [PubMed]

Miller, D. A. B.

D. S. Chemla, D. A. B. Miller, S. Schmitt-Rink, Phys. Rev. Lett. 59, 1018 (1987).
[CrossRef] [PubMed]

Morkoç, H.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986).
[CrossRef] [PubMed]

Mysyrowicz, A.

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986).
[CrossRef] [PubMed]

Schmitt-Rink, S.

D. S. Chemla, D. A. B. Miller, S. Schmitt-Rink, Phys. Rev. Lett. 59, 1018 (1987).
[CrossRef] [PubMed]

S. Schmitt-Rink, D. S. Chemla, Phys. Rev. Lett. 57, 2752 (1986).
[CrossRef] [PubMed]

Von Lehmen, A.

Yamanishi, M.

M. Yamanishi, Phys. Rev. Lett. 59, 1014 (1987).
[CrossRef] [PubMed]

Zayhowski, J. J.

H. Q. Le, J. J. Zayhowski, W. D. Goodhue, J. Bales, in GaAs and Related Compounds 1986, W. T. Lindley, ed. (Institute of Physics, Bristol, England, 1987); H. Q. Le, J. J. Zayhowski, W. D. Goodhue, Appl. Phys. Lett. 50, 1518 (1987).
[CrossRef]

Zucker, J. E.

Opt. Lett. (1)

Phys. Rev. Lett. (4)

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986).
[CrossRef] [PubMed]

S. Schmitt-Rink, D. S. Chemla, Phys. Rev. Lett. 57, 2752 (1986).
[CrossRef] [PubMed]

M. Yamanishi, Phys. Rev. Lett. 59, 1014 (1987).
[CrossRef] [PubMed]

D. S. Chemla, D. A. B. Miller, S. Schmitt-Rink, Phys. Rev. Lett. 59, 1018 (1987).
[CrossRef] [PubMed]

Other (2)

H. Q. Le, J. J. Zayhowski, W. D. Goodhue, J. Bales, in GaAs and Related Compounds 1986, W. T. Lindley, ed. (Institute of Physics, Bristol, England, 1987); H. Q. Le, J. J. Zayhowski, W. D. Goodhue, Appl. Phys. Lett. 50, 1518 (1987).
[CrossRef]

See, for example, J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig 1
Fig 1

Model for the ACQW structure studied. The calculated probability density for electron state e1 and hole states h1 and h2 is shown for (a) E = 0 kV/cm and (b) = 7.5 kV/cm, which corresponds to the bias field in the sample. Even in the absence of an electric field as illustrated in (a), owing to the difference between electron and hole masses, the probability density of e1 exhibits less localization than that of h1, resulting in a net relative spatial displacement, and consequently an electric dipole moment, labeled P11. For h2, the dipole moment P12 is opposite P11.

Fig. 2
Fig. 2

(a) Absorptance of the probe without the pump (solid curve) and with a 9 × 104 W/cm2 pump at 1580 meV (dashed curve). No external field was applied. (b) Stark shifts of excitons observed with photoluminescence excitation method. Traces labeled from (a)–(f) correspond to a gradual decrease of external electric fields. The dashed and dotted curves are curves (b) and (c) superimposed upon (a) for comparison.

Fig. 3
Fig. 3

ΔT/T of the probe at 1542.5 meV [the lower edge of the (e1, h1) exciton line] versus pump–probe delay time for (a) pump photon energy less than (e1, h1) exciton energy (pump intensity ≈ 9 × 105 W/cm2) and (b) pump photon energy ≈ (e1, h1) energy. The pump intensity in (b) was 4.5 × 105 W/cm2

Fig. 4
Fig. 4

(a) Change in probe transmittance ΔT as a function of probe photon energy for a fixed pump photon energy at 1539 meV, below the absorption edge. The arrows point to the zero-crossing points. (b) Absorptance of probe beam at 26 psec before the arrival of the pump pulse (solid curve) and at the same time as the pump pulse (dashed curve).

Metrics