Abstract

It is shown that polarization fluctuations in the input fiber to an interferometric sensor can result in the generation of excess phase noise in the output. Experimental observations of this phenomenon are compared with theoretical models, and the impact of this noise source in interferometric sensors is briefly discussed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Sheem, T. G. Giallorenzi, Appl. Phys. Lett. 35, 914 (1978).
    [CrossRef]
  2. D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
    [CrossRef]
  3. R. Ulrich, Appl. Phys. Lett. 35, 840 (1979).
    [CrossRef]
  4. H. C. Lefevre, Electron. Lett. 16, 778 (1980).
    [CrossRef]
  5. T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
    [CrossRef]
  6. N. J. Frigo, A. Dandridge, A. B. Tveten, Electron. Lett. 20, 319 (1984).
    [CrossRef]
  7. K. H. Wanser, N. H. Safar, Opt. Lett. 12, 217 (1987).
    [CrossRef] [PubMed]
  8. A. D. Kersey, A. Dandridge, in Technical Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1988), p. 44.
  9. A. D. Kersey, A. Dandridge, A. B. Tveten, Opt. Lett. 13, 288 (1988).
    [CrossRef] [PubMed]
  10. M. Johnson, Appl. Opt. 20, 2075 (1982).
    [CrossRef]
  11. A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 517 (1977).
    [CrossRef]
  12. A. D. Kersey, A. C. Lewin, D. A. Jackson, Electron. Lett. 20, 368 (1984).
    [CrossRef]

1988

1987

1985

T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
[CrossRef]

1984

N. J. Frigo, A. Dandridge, A. B. Tveten, Electron. Lett. 20, 319 (1984).
[CrossRef]

A. D. Kersey, A. C. Lewin, D. A. Jackson, Electron. Lett. 20, 368 (1984).
[CrossRef]

1982

M. Johnson, Appl. Opt. 20, 2075 (1982).
[CrossRef]

D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
[CrossRef]

1980

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[CrossRef]

1979

R. Ulrich, Appl. Phys. Lett. 35, 840 (1979).
[CrossRef]

1978

S. K. Sheem, T. G. Giallorenzi, Appl. Phys. Lett. 35, 914 (1978).
[CrossRef]

1977

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 517 (1977).
[CrossRef]

Dandridge, A.

A. D. Kersey, A. Dandridge, A. B. Tveten, Opt. Lett. 13, 288 (1988).
[CrossRef] [PubMed]

N. J. Frigo, A. Dandridge, A. B. Tveten, Electron. Lett. 20, 319 (1984).
[CrossRef]

A. D. Kersey, A. Dandridge, in Technical Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1988), p. 44.

Frigo, N. J.

N. J. Frigo, A. Dandridge, A. B. Tveten, Electron. Lett. 20, 319 (1984).
[CrossRef]

Giallorenzi, T. G.

S. K. Sheem, T. G. Giallorenzi, Appl. Phys. Lett. 35, 914 (1978).
[CrossRef]

Jackson, D. A.

A. D. Kersey, A. C. Lewin, D. A. Jackson, Electron. Lett. 20, 368 (1984).
[CrossRef]

Johnson, M.

Kersey, A. D.

A. D. Kersey, A. Dandridge, A. B. Tveten, Opt. Lett. 13, 288 (1988).
[CrossRef] [PubMed]

A. D. Kersey, A. C. Lewin, D. A. Jackson, Electron. Lett. 20, 368 (1984).
[CrossRef]

A. D. Kersey, A. Dandridge, in Technical Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1988), p. 44.

Lefevre, H. C.

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[CrossRef]

Lewin, A. C.

A. D. Kersey, A. C. Lewin, D. A. Jackson, Electron. Lett. 20, 368 (1984).
[CrossRef]

Moore, D. R.

D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
[CrossRef]

Okoshi, T.

T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
[CrossRef]

Priest, R. G.

D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
[CrossRef]

Safar, N. H.

Sheem, S. K.

S. K. Sheem, T. G. Giallorenzi, Appl. Phys. Lett. 35, 914 (1978).
[CrossRef]

Simon, A.

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 517 (1977).
[CrossRef]

Stowe, D. W.

D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
[CrossRef]

Tveten, A. B.

A. D. Kersey, A. Dandridge, A. B. Tveten, Opt. Lett. 13, 288 (1988).
[CrossRef] [PubMed]

N. J. Frigo, A. Dandridge, A. B. Tveten, Electron. Lett. 20, 319 (1984).
[CrossRef]

Ulrich, R.

R. Ulrich, Appl. Phys. Lett. 35, 840 (1979).
[CrossRef]

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 517 (1977).
[CrossRef]

Wanser, K. H.

Appl. Opt.

Appl. Phys. Lett.

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 517 (1977).
[CrossRef]

S. K. Sheem, T. G. Giallorenzi, Appl. Phys. Lett. 35, 914 (1978).
[CrossRef]

R. Ulrich, Appl. Phys. Lett. 35, 840 (1979).
[CrossRef]

Electron. Lett.

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[CrossRef]

A. D. Kersey, A. C. Lewin, D. A. Jackson, Electron. Lett. 20, 368 (1984).
[CrossRef]

N. J. Frigo, A. Dandridge, A. B. Tveten, Electron. Lett. 20, 319 (1984).
[CrossRef]

IEEE J. Lightwave Technol.

T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
[CrossRef]

IEEE J. Quantum Electron.

D. W. Stowe, D. R. Moore, R. G. Priest, IEEE J. Quantum Electron. QE-18, 1644 (1982).
[CrossRef]

Opt. Lett.

Other

A. D. Kersey, A. Dandridge, in Technical Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1988), p. 44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of a fiber Mach–Zehnder interferometer and the evolution of the input SOP, Ci, along the signal and reference arms as shown by the Poincaré sphere representation of polarized light. (b) Poincaré sphere representation of the differential eigenmode Rrs, which can be used to describe the polarization properties of an interferometric system.

Fig. 2
Fig. 2

Theoretical curves showing the dependence of the interferometers’ sensitivity to input polarization noise δγ/δθ as a function of θ, as defined by Eq. (4), for various values of Ωrs

Fig. 3
Fig. 3

Experimental setup used to investigate input-polarization-induced phase noise in an interferometric system.

Fig. 4
Fig. 4

(a) Output synthetic heterodyne carrier signals observed with the input fiber shaker on and the input-polarization controllers set to give (i) optimum visibility (0.97) and (ii) minimum visibility (0.47). (b) Demodulated input-polarization-induced phase-noise outputs: (i) upper trace shows polarization noise at input pick off (D1), lower trace shows interferometer phase output; (ii) frequency spectrum of interferometer noise floor over the range of 0–50 Hz with the input fiber shaker on (upper trace) and off (lower trace) with the system at Vmin.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I a = ½ I 0 { cos 2 ( θ / 2 ) [ 1 + cos ( ϕ + Ω r - s / 2 ) ] } ,
I b = ½ I 0 { sin 2 ( θ / 2 ) [ 1 + cos ( ϕ - Ω r - s / 2 ) ] } ,
I = ½ I 0 [ 1 + cos ( ϕ ) cos ( Ω r - s / 2 ) - cos ( θ ) sin ( ϕ ) sin ( Ω r - s / 2 ) ] , = ½ I 0 { 1 + [ 1 - sin 2 θ sin 2 ( Ω r - s / 2 ) ] 1 / 2 cos ( ϕ - γ ) } ,
tan γ = tan ( Ω r - s / 2 ) cos θ
Δ γ = ( γ / δ θ ) Δ θ = tan ( Ω r - s / 2 ) sin θ ( 1 + tan 2 ( Ω r - s / 2 ) cos 2 θ ) Δ θ .
V = [ 1 - sin 2 θ sin 2 ( Ω r - s / 2 ) ] 1 / 2 ,

Metrics