Abstract

The stretch-dependent extinction ratio for a birefringent single-mode fiber is examined. This ratio exhibits a quasi-periodic change as the fiber is axially stretched. This effect can be explained as the power transfer from a linearly polarized guided HE11, mode to an orthogonally polarized HE11 that is due to mode coupling.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Namihira, Y. Horiuchi, H. Wakabayashi, Electron. Lett. 23, 1201 (1987).
    [CrossRef]
  2. S. L. A. Carrara, B. Y. Kim, H. J. Shaw, Opt. Lett. 11, 470 (1986).
    [CrossRef] [PubMed]
  3. Y. Imai, Y. Ohtsuka, Appl. Opt. 25, 4444 (1986).
    [CrossRef] [PubMed]
  4. Y. Ohtsuka, T. Ando, Y. Imai, M. Imai, IEEE J. Lightwave Technol. LT-5, 602 (1987).
    [CrossRef]
  5. M. Monerie, L. Jeunhomme, Opt. Quantum Electron. 12, 449 (1980).
    [CrossRef]
  6. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Chap. 7.
  7. S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
    [CrossRef]

1987

Y. Namihira, Y. Horiuchi, H. Wakabayashi, Electron. Lett. 23, 1201 (1987).
[CrossRef]

Y. Ohtsuka, T. Ando, Y. Imai, M. Imai, IEEE J. Lightwave Technol. LT-5, 602 (1987).
[CrossRef]

1986

1983

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

1980

M. Monerie, L. Jeunhomme, Opt. Quantum Electron. 12, 449 (1980).
[CrossRef]

Ando, T.

Y. Ohtsuka, T. Ando, Y. Imai, M. Imai, IEEE J. Lightwave Technol. LT-5, 602 (1987).
[CrossRef]

Carrara, S. L. A.

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Chap. 7.

Horiuchi, Y.

Y. Namihira, Y. Horiuchi, H. Wakabayashi, Electron. Lett. 23, 1201 (1987).
[CrossRef]

Imai, M.

Y. Ohtsuka, T. Ando, Y. Imai, M. Imai, IEEE J. Lightwave Technol. LT-5, 602 (1987).
[CrossRef]

Imai, Y.

Y. Ohtsuka, T. Ando, Y. Imai, M. Imai, IEEE J. Lightwave Technol. LT-5, 602 (1987).
[CrossRef]

Y. Imai, Y. Ohtsuka, Appl. Opt. 25, 4444 (1986).
[CrossRef] [PubMed]

Jeunhomme, L.

M. Monerie, L. Jeunhomme, Opt. Quantum Electron. 12, 449 (1980).
[CrossRef]

Kim, B. Y.

Monerie, M.

M. Monerie, L. Jeunhomme, Opt. Quantum Electron. 12, 449 (1980).
[CrossRef]

Namihira, Y.

Y. Namihira, Y. Horiuchi, H. Wakabayashi, Electron. Lett. 23, 1201 (1987).
[CrossRef]

Ohtsuka, Y.

Y. Ohtsuka, T. Ando, Y. Imai, M. Imai, IEEE J. Lightwave Technol. LT-5, 602 (1987).
[CrossRef]

Y. Imai, Y. Ohtsuka, Appl. Opt. 25, 4444 (1986).
[CrossRef] [PubMed]

Rashleigh, S. C.

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

Shaw, H. J.

Wakabayashi, H.

Y. Namihira, Y. Horiuchi, H. Wakabayashi, Electron. Lett. 23, 1201 (1987).
[CrossRef]

Appl. Opt.

Electron. Lett.

Y. Namihira, Y. Horiuchi, H. Wakabayashi, Electron. Lett. 23, 1201 (1987).
[CrossRef]

IEEE J. Lightwave Technol.

Y. Ohtsuka, T. Ando, Y. Imai, M. Imai, IEEE J. Lightwave Technol. LT-5, 602 (1987).
[CrossRef]

S. C. Rashleigh, IEEE J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

M. Monerie, L. Jeunhomme, Opt. Quantum Electron. 12, 449 (1980).
[CrossRef]

Other

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Coordinate system for elliptically jacketed birefringent single-mode fiber. The mode transfer is schematically depicted at the output site.

Fig. 2
Fig. 2

Experimental arrangement.

Fig. 3
Fig. 3

Measured extinction-ratio dependence on the fiber extension.

Fig. 4
Fig. 4

Measured phase retardation as a function of fiber extension and contraction.

Fig. 5
Fig. 5

Computed extinction-ratio dependence on the fiber extension.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η = I y / ( I x + I y ) .
Δ ϕ = β 0 Δ z + Δ β z 0 = ( β 0 + Δ β z 0 Δ z ) Δ z ,
β = β 0 + α Δ z .
κ = κ 0 + γ Δ z ,
d E x d z = i β x E x + κ E y , d E y d z = - i β y E y - κ * E x ,

Metrics