Abstract

We present a method, based on the equivalent-current theory of optical waveguide coupling, by which metal-clad optical fiber polarizers can be analyzed. Good agreement between theoretical predictions and previously published experimental results is attained.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bergh, H. C. Lefevre, H. J. Shaw, Opt. Lett. 5, 479 (1980).
    [CrossRef] [PubMed]
  2. W. Eickhoff, Electron. Lett. 16, 762 (1980).
    [CrossRef]
  3. D. Gruchmann, K. Petermann, L. Satudigel, E. Weidel presented at Ninth European Conference on Optical Communication, 1983.
  4. T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
    [CrossRef]
  5. Y. Wu, J. Opt. Soc. Am. A 4, 1902 (1987).
    [CrossRef]
  6. E. Snitzer, J. Opt. Soc. Am. 51, 491 (1961).
    [CrossRef]

1987

1982

T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
[CrossRef]

1980

1961

Bergh, R. A.

Eickhoff, W.

W. Eickhoff, Electron. Lett. 16, 762 (1980).
[CrossRef]

Gruchmann, D.

D. Gruchmann, K. Petermann, L. Satudigel, E. Weidel presented at Ninth European Conference on Optical Communication, 1983.

Hosaka, T.

T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
[CrossRef]

Lefevre, H. C.

Noda, J.

T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
[CrossRef]

Okamoto, K.

T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
[CrossRef]

Petermann, K.

D. Gruchmann, K. Petermann, L. Satudigel, E. Weidel presented at Ninth European Conference on Optical Communication, 1983.

Satudigel, L.

D. Gruchmann, K. Petermann, L. Satudigel, E. Weidel presented at Ninth European Conference on Optical Communication, 1983.

Shaw, H. J.

Snitzer, E.

Weidel, E.

D. Gruchmann, K. Petermann, L. Satudigel, E. Weidel presented at Ninth European Conference on Optical Communication, 1983.

Wu, Y.

Electron. Lett.

W. Eickhoff, Electron. Lett. 16, 762 (1980).
[CrossRef]

IEEE J. Quantum Electron.

T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Lett.

Other

D. Gruchmann, K. Petermann, L. Satudigel, E. Weidel presented at Ninth European Conference on Optical Communication, 1983.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Fiber-type polarizer structure.

Fig. 2
Fig. 2

Relation between extinction ratio and polarizer length L: solid line, theoretical prediction; dashed line, experimental data given by Ref. 4.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

α = Im [ ω 0 2 ( n 2 2 - n m 2 ) s E · E 1 - d s ] ·
E x = { E x 1 = - A 0 j β a u [ 1 - P 2 J 0 ( u ρ ) - 1 + P 2 J 2 ( u ρ ) cos 2 θ ] 0 ρ 1 E x 2 = - A 0 j β a w J 1 ( u ) K 1 ( w ) [ 1 - P 2 K 0 ( w ρ ) + 1 + P 2 K 2 ( w ρ ) cos 2 θ ] 0 ρ 1
E y = { A 0 j β a u 1 + P 2 J 2 ( u ρ ) sin 2 θ 0 ρ 1 - A 0 j β a w J 1 ( u ) K 1 ( w ) 1 + P 2 K 2 ( w ρ ) sin 2 θ ρ 1 ,
E z = { A 0 J 1 ( u ρ ) cos θ 0 ρ 1 A 0 J 1 ( u ) K 1 ( w ) K 1 ( ω ρ ) cos θ ρ 1 ,
E x = { E x 1 = - A 0 j β a u J 0 ( u ρ ) 0 ρ 1 E x 2 = - A 0 j β a w J 1 ( u ) K 1 ( w ) K 0 ( w ρ ) ρ 1
E y = 0 ,
E z = { A 0 J 1 ( u ρ ) cos θ 0 ρ 1 A 0 J 1 ( u ) K 1 ( w ) K 1 ( w ρ ) cos θ ρ 1 .
E i x = E x 2 = - A 0 j β a w J 1 ( u ) K 1 ( w ) K 0 ( w ρ ) = E 0 i K 0 ( w ρ ) , E y x = E 0 y I 0 ( w ρ ) , E t x = E 0 t K 0 ( w ρ ) .
T x = E 0 t E 0 i = K 0 ( l ) I 1 ( l ) + K 1 ( l ) I 0 ( l ) K 0 ( l ) I 1 ( l ) + ( w / w ) K 1 ( l ) I 0 ( l ) ,
l = w [ 1 + ( h / a ) ] , l = w [ 1 + ( h / a ) ] .
E = E t x = - A 0 j β a w J 1 ( u ) K 1 ( w ) T x K 0 ( w ρ ) ,
α x = Im [ ω 0 2 a + h + 0 π ( n 2 2 - n m 2 ) E t x E x r d r d θ ] = k 0 2 β a 2 w 2 D J 1 2 ( u ) K 1 2 ( w ) Im [ ( n 2 2 - n m 2 ) T x I ] ,
D = 1 u 2 [ J 1 2 ( u ) + J 0 2 ( u ) ] + 1 w 2 J 1 2 ( u ) K 1 2 ( w ) [ K 1 2 ( w ) - K 0 2 ( w ) ] , I = a ( a + h ) w 2 - w 2 [ w K 0 ( l ) K 1 ( l ) - w K 0 ( l ) K 1 ( l ) ] .
α y = β a 2 w 2 D J 1 2 ( u ) K 1 2 ( w ) Im ( n 2 2 - n m 2 n m 2 T y I ) , T y = K 0 ( l ) I 1 ( l ) + K 1 ( l ) I 0 ( l ) K 0 ( l ) I 1 ( l ) + ( n 2 2 / n m 2 ) w w K 1 ( l ) I 0 ( l ) ,
ER = 10 ( α y - α x ) L / ln 10 ( dB ) .

Metrics