Abstract

A GaAlAs laser diode has been locked to the D2 transition of Cs atoms in an atomic beam. Measured frequency stabilities are 1 × 10−10 (0.1 sec), 8.4 × 10−12 (1 sec), 2.2 × 10−12 (10 sec), and 7.8 × 10−13 (100 sec). This system has been successfully applied to an optically pumped Cs-beam frequency standard.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tsuchida, M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 20, 403 (1981).
    [CrossRef]
  2. S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, Appl. Phys. 22, 258 (1983).
  3. H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramachi, N. Oura, Jpn. J. Appl. Phys. 21, 561 (1982).
    [CrossRef]
  4. H. Hori, Y. Kitayama, M. Kitano, T. Yabuzaki, T. Ogawa, IEEE J. Quantum Electron. QE-19, 169 (1983).
    [CrossRef]
  5. D. W. Allan, Proc. IEEE 54, 221 (1966).
    [CrossRef]
  6. D. Wang, S. Go, L. Xie, Y. Wang, Chin. Phys. Lett. 5, 97 (1988).
    [CrossRef]
  7. R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
    [CrossRef]
  8. M. Ohtsu, S. Kotajima, IEEE J. Quantum Electron. QE-21, 1905 (1985).
    [CrossRef]

1988

D. Wang, S. Go, L. Xie, Y. Wang, Chin. Phys. Lett. 5, 97 (1988).
[CrossRef]

1985

M. Ohtsu, S. Kotajima, IEEE J. Quantum Electron. QE-21, 1905 (1985).
[CrossRef]

1983

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, Appl. Phys. 22, 258 (1983).

H. Hori, Y. Kitayama, M. Kitano, T. Yabuzaki, T. Ogawa, IEEE J. Quantum Electron. QE-19, 169 (1983).
[CrossRef]

1982

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramachi, N. Oura, Jpn. J. Appl. Phys. 21, 561 (1982).
[CrossRef]

1981

H. Tsuchida, M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 20, 403 (1981).
[CrossRef]

1966

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Allan, D. W.

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Devlin, W. J.

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

Go, S.

D. Wang, S. Go, L. Xie, Y. Wang, Chin. Phys. Lett. 5, 97 (1988).
[CrossRef]

Hori, H.

H. Hori, Y. Kitayama, M. Kitano, T. Yabuzaki, T. Ogawa, IEEE J. Quantum Electron. QE-19, 169 (1983).
[CrossRef]

Kitano, M.

H. Hori, Y. Kitayama, M. Kitano, T. Yabuzaki, T. Ogawa, IEEE J. Quantum Electron. QE-19, 169 (1983).
[CrossRef]

Kitayama, Y.

H. Hori, Y. Kitayama, M. Kitano, T. Yabuzaki, T. Ogawa, IEEE J. Quantum Electron. QE-19, 169 (1983).
[CrossRef]

Kotajima, S.

M. Ohtsu, S. Kotajima, IEEE J. Quantum Electron. QE-21, 1905 (1985).
[CrossRef]

Kuramachi, N.

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramachi, N. Oura, Jpn. J. Appl. Phys. 21, 561 (1982).
[CrossRef]

Ogawa, T.

H. Hori, Y. Kitayama, M. Kitano, T. Yabuzaki, T. Ogawa, IEEE J. Quantum Electron. QE-19, 169 (1983).
[CrossRef]

Ohtsu, M.

M. Ohtsu, S. Kotajima, IEEE J. Quantum Electron. QE-21, 1905 (1985).
[CrossRef]

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, Appl. Phys. 22, 258 (1983).

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramachi, N. Oura, Jpn. J. Appl. Phys. 21, 561 (1982).
[CrossRef]

H. Tsuchida, M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 20, 403 (1981).
[CrossRef]

Oura, N.

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramachi, N. Oura, Jpn. J. Appl. Phys. 21, 561 (1982).
[CrossRef]

Sanpei, S.

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, Appl. Phys. 22, 258 (1983).

Tako, T.

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, Appl. Phys. 22, 258 (1983).

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramachi, N. Oura, Jpn. J. Appl. Phys. 21, 561 (1982).
[CrossRef]

H. Tsuchida, M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 20, 403 (1981).
[CrossRef]

Tsuchida, H.

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, Appl. Phys. 22, 258 (1983).

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramachi, N. Oura, Jpn. J. Appl. Phys. 21, 561 (1982).
[CrossRef]

H. Tsuchida, M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 20, 403 (1981).
[CrossRef]

Wang, D.

D. Wang, S. Go, L. Xie, Y. Wang, Chin. Phys. Lett. 5, 97 (1988).
[CrossRef]

Wang, Y.

D. Wang, S. Go, L. Xie, Y. Wang, Chin. Phys. Lett. 5, 97 (1988).
[CrossRef]

Wyatt, R.

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

Xie, L.

D. Wang, S. Go, L. Xie, Y. Wang, Chin. Phys. Lett. 5, 97 (1988).
[CrossRef]

Yabuzaki, T.

H. Hori, Y. Kitayama, M. Kitano, T. Yabuzaki, T. Ogawa, IEEE J. Quantum Electron. QE-19, 169 (1983).
[CrossRef]

Appl. Phys.

S. Sanpei, H. Tsuchida, M. Ohtsu, T. Tako, Appl. Phys. 22, 258 (1983).

Chin. Phys. Lett.

D. Wang, S. Go, L. Xie, Y. Wang, Chin. Phys. Lett. 5, 97 (1988).
[CrossRef]

Electron. Lett.

R. Wyatt, W. J. Devlin, Electron. Lett. 19, 110 (1983).
[CrossRef]

IEEE J. Quantum Electron.

M. Ohtsu, S. Kotajima, IEEE J. Quantum Electron. QE-21, 1905 (1985).
[CrossRef]

H. Hori, Y. Kitayama, M. Kitano, T. Yabuzaki, T. Ogawa, IEEE J. Quantum Electron. QE-19, 169 (1983).
[CrossRef]

Jpn. J. Appl. Phys.

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramachi, N. Oura, Jpn. J. Appl. Phys. 21, 561 (1982).
[CrossRef]

H. Tsuchida, M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 20, 403 (1981).
[CrossRef]

Proc. IEEE

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for frequency locking the laser diode (L.D.) to the D2 line of Cs atoms in an atomic beam. A Cs oven and a detector (D1) are located inside the Cs-beam high-vacuum tube. The frequency-locking loop includes the lock-in amplifier, the PID circuit, and detector D1. F.M., signal generator that provides 3.0-kHz sinusoidal wave modulation and reference signal; T.C., temperature controller; M1 and M2, mirrors.

Fig. 2
Fig. 2

Energy-level diagram of the Cs atom. LD, laser diode.

Fig. 3
Fig. 3

Recorded frequency-discrimination curves. Points A, B, and C correspond to the central frequencies of transitions F = 4 to F′ = 3, F = 4 to F′ = 4, and F = 4 to F′ = 5, respectively. The frequency spacings between points A and B and points B and C are 203 and 253 MHz, respectively.

Fig. 4
Fig. 4

Measured frequency stability of the diode-laser frequency locked to the F = 4 to F′ = 4 transition line. The upper trace is for the free-running condition, and the lower trace is for the closed-loop condition.

Fig. 5
Fig. 5

Recorded frequency fluctuation of the laser diode. Left-hand trace: free-running condition; right-hand trace: frequency locked to the F = 4 to F′ = 4 transition of the Cs D2 line.

Metrics