Abstract

The stability of the output light from a diode-pumped intracavity frequency-doubled Nd:YAG laser was studied. An intracavity nonlinear crystal, such as Type II phase-matched potassium titanyl phosphate, was used for frequency doubling. The incident beam consisted of two orthogonal linearly polarized modes. When the polarization eigenvectors were parallel to the E and O axes of the crystal, a large amplitude fluctuation was observed; however, when the azimuthal angle between the polarization eigenvectors and the axis was 45°, the light output was stabilized. The experimental results are explained by analyzing the coupling of the two orthogonal linearly polarized modes through a sum-frequency-generation process.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Chinn, Appl. Phys. Lett. 29, 176 (1976).
    [CrossRef]
  2. T. Baer, M. S. Keirstead, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), paper ThZZ1.
  3. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
    [CrossRef] [PubMed]
  4. T. Y. Fan, G. J. Dixon, R. L. Byer, Opt. Lett. 11, 204 (1986).
    [CrossRef] [PubMed]
  5. T. Baer, J. Opt. Soc. Am. B 3, 1175 (1986).
    [CrossRef]
  6. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, Opt. Lett. 12, 1014 (1987).
    [CrossRef] [PubMed]
  7. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, R. S. Feigelson, Appl. Opt. 26, 2390 (1987).
    [CrossRef] [PubMed]
  8. R. C. Jones, J. Opt. Soc. Am. 37, 107 (1947).
    [CrossRef]
  9. W. M. Doyle, M. B. White, J. Opt. Soc. Am. 55, 1221 (1965).
    [CrossRef]
  10. M. Sakamoto, Y. Kato, Appl. Phys. Lett. 50, 869 (1987).
    [CrossRef]

1987

1986

1985

1976

S. R. Chinn, Appl. Phys. Lett. 29, 176 (1976).
[CrossRef]

1965

1947

Baer, T.

T. Baer, J. Opt. Soc. Am. B 3, 1175 (1986).
[CrossRef]

T. Baer, M. S. Keirstead, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), paper ThZZ1.

Byer, R. L.

Chinn, S. R.

S. R. Chinn, Appl. Phys. Lett. 29, 176 (1976).
[CrossRef]

Dixon, G. J.

Doyle, W. M.

Eckardt, R. C.

Fan, T. Y.

Fan, Y. X.

Feigelson, R. S.

Hu, B. Q.

Huang, C. E.

Jones, R. C.

Kane, T. J.

Kato, Y.

M. Sakamoto, Y. Kato, Appl. Phys. Lett. 50, 869 (1987).
[CrossRef]

Keirstead, M. S.

T. Baer, M. S. Keirstead, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), paper ThZZ1.

Kozlovsky, W. J.

Nabors, C. D.

Sakamoto, M.

M. Sakamoto, Y. Kato, Appl. Phys. Lett. 50, 869 (1987).
[CrossRef]

White, M. B.

Zhou, B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the laser cavity. The fast axis of the QWP makes an angle α with respect to the E axis of the KTP.

Fig. 2
Fig. 2

Relation between the eigenvectors and the direction of the QWP.

Fig. 3
Fig. 3

Experimental setup for the noise measurements of the laser output from the intracavity frequency-doubled Nd:YAG laser pumped by a laser diode.

Fig. 4
Fig. 4

Oscilloscope traces of the laser output at 1.06 μm. The dashed lines indicate the average level; the dotted lines show the ground level. The horizontal scale is 50 μsec/division; the QWP angle α is 0°, (a) Waveform with polarizer angle 0°, (b) waveform with polarizer angle 90°, (c) waveform without the polarizer.

Fig. 5
Fig. 5

Oscilloscope traces of the laser output at 1.06 μm when the QWP angle α is 45°. (a) Waveform with polarizer angle 45°, (b) waveform with polarizer angle −45°.

Fig. 6
Fig. 6

(a) Oscilloscope traces of the laser output at 0.532 μm when the QWP angle α is 45°. (b) Noise spectrum measured by a spectrum analyzer when QWP angle α was 45°. Resolution bandwidth, 100 kHz; video bandwidth, 30 kHz.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P ( 2 ω ) = d eff E o ( ω ) E e ( ω ) , d eff ( d 24 - d 15 ) sin 2 θ sin 2 ϕ - ( d 15 sin 2 ϕ + d 24 cos 2 ϕ ) sin θ ,
M = C ( δ ) R ( α ) C ( π / 2 ) C ( π / 2 ) R ( - α ) C ( δ ) ,
M = i [ exp ( i δ ) cos 2 α sin 2 α sin 2 α - exp ( - i δ ) cos 2 α ] .
E 1 ( ω 1 ) = E 1 ( 1 0 ) ,             E 2 ( ω 2 ) = E 2 ( 0 1 )             ( α = 0 ° or α = 90 ° ) ,
E 1 ( ω 1 ) = 2 2 E 1 ( 1 1 ) ,             E 2 ( ω 2 ) = 2 2 E 2 ( 1 - 1 )             ( α = 45 ° ) ,
P ( ω 1 + ω 2 ) = d eff E 1 E 2 ,             ( α = 0 ° or α = 90 ° ) ,
P ( ω 1 + ω 2 ) = ½ d eff ( E 1 2 - E 2 2 )             ( α = 45 ° ) .
I ( ω 1 + ω 2 ) = P ( ω 1 + ω 2 ) P ( ω 1 + ω 2 ) * = d eff 2 E 1 2 E 2 2 = d eff 2 I 1 I 2             ( α = 0 ° or α = 90 ° ) ,
I ( ω 1 + ω 2 ) = P ( ω 1 + ω 2 ) P ( ω 1 + ω 2 ) * = ¼ d eff 2 [ ( E 1 2 - E 2 2 ) ( E 1 2 - E 2 2 ) * ] = ¼ d eff 2 { E 1 4 + E 2 4 - 2 E 1 2 E 2 2 × cos 2 [ ( ω 1 - ω 2 ) l + ( ψ 1 - ψ 2 ) ] } = ¼ d eff 2 ( I 1 2 + I 2 2 )             ( α = 45 ° ) ,

Metrics