Abstract

The stability of the output light from a diode-pumped intracavity frequency-doubled Nd:YAG laser was studied. An intracavity nonlinear crystal, such as Type II phase-matched potassium titanyl phosphate, was used for frequency doubling. The incident beam consisted of two orthogonal linearly polarized modes. When the polarization eigenvectors were parallel to the E and O axes of the crystal, a large amplitude fluctuation was observed; however, when the azimuthal angle between the polarization eigenvectors and the axis was 45°, the light output was stabilized. The experimental results are explained by analyzing the coupling of the two orthogonal linearly polarized modes through a sum-frequency-generation process.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription