Abstract

A real-time near IR-to-visible image converter using a Hughes silicon liquid-crystal light valve (Si LCLV) has been demonstrated. A 1.06-μm image was converted to a 0.633-μm laser wavelength. The major advantages of this near-IR-to-visible image converter are its high sensitivity, broad bandwidth, coherent- (incoherent-) to-coherent (incoherent) image conversion, up and down wavelength conversion capability, high resolution (>105 resolution elements), room-temperature operation, and high damage threshold.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Martin, R. W. Hellwarth, Appl. Phys. Lett. 34, 371 (1979).
    [Crossref]
  2. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, Orlando, Fla., 1984), Chap. 5 and 6.
  3. I. C. Khoo, R. Normandin, Appl. Phys. Lett. 47, 350 (1985).
    [Crossref]
  4. For example, see the products of FJW Industries, Mount Prospect, Illinois; also, R. J. Phelan, J. O. Dimmock, Appl. Phys. Lett. 11, 359 (1967).
    [Crossref]
  5. U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, R. N. Schwartz, J. Appl. Phys. 57, 1356 (1985).
    [Crossref]
  6. For example, see P. G. deGenes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).
  7. S. T. Wu, U. Efron, L. D. Hess, Appl. Opt. 23, 3911 (1984).
    [Crossref] [PubMed]
  8. P. D. Berezin, L. M. Blinov, I. N. Kompanets, V. V. Nikitin, Sov. J. Quantum Electron. 3, 78 (1973).
    [Crossref]
  9. W. T. Cathey, Optical Information Processing and Holography (Wiley Interscience, New York, 1974), pp. 244ff.
  10. For example, see S. M. Sze, Physics of Semiconductors (Wiley Interscience, New York, 1981), p. 54.
  11. P. O. Braatz, Hughes Research Laboratories, U.S. patent application pending.
  12. S. T. Wu, U. Efron, J. Grinberg, L. D. Hess, M. S. Welkowsky, Proc. Soc. Photo-Opt. Instrum. Eng. 572, 94 (1986).
  13. S. T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
    [Crossref]
  14. S. T. Wu, Phys. Rev. A 30, 1270 (1986).
    [Crossref]
  15. J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Bosewell, G. Myer, Opt. Eng. 14, 217 (1975).

1986 (2)

S. T. Wu, U. Efron, J. Grinberg, L. D. Hess, M. S. Welkowsky, Proc. Soc. Photo-Opt. Instrum. Eng. 572, 94 (1986).

S. T. Wu, Phys. Rev. A 30, 1270 (1986).
[Crossref]

1985 (2)

I. C. Khoo, R. Normandin, Appl. Phys. Lett. 47, 350 (1985).
[Crossref]

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, R. N. Schwartz, J. Appl. Phys. 57, 1356 (1985).
[Crossref]

1984 (2)

S. T. Wu, U. Efron, L. D. Hess, Appl. Opt. 23, 3911 (1984).
[Crossref] [PubMed]

S. T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
[Crossref]

1979 (1)

G. Martin, R. W. Hellwarth, Appl. Phys. Lett. 34, 371 (1979).
[Crossref]

1975 (1)

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Bosewell, G. Myer, Opt. Eng. 14, 217 (1975).

1973 (1)

P. D. Berezin, L. M. Blinov, I. N. Kompanets, V. V. Nikitin, Sov. J. Quantum Electron. 3, 78 (1973).
[Crossref]

1967 (1)

For example, see the products of FJW Industries, Mount Prospect, Illinois; also, R. J. Phelan, J. O. Dimmock, Appl. Phys. Lett. 11, 359 (1967).
[Crossref]

Berezin, P. D.

P. D. Berezin, L. M. Blinov, I. N. Kompanets, V. V. Nikitin, Sov. J. Quantum Electron. 3, 78 (1973).
[Crossref]

Bleha, W. P.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Bosewell, G. Myer, Opt. Eng. 14, 217 (1975).

Blinov, L. M.

P. D. Berezin, L. M. Blinov, I. N. Kompanets, V. V. Nikitin, Sov. J. Quantum Electron. 3, 78 (1973).
[Crossref]

Bosewell, D.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Bosewell, G. Myer, Opt. Eng. 14, 217 (1975).

Braatz, P. O.

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, R. N. Schwartz, J. Appl. Phys. 57, 1356 (1985).
[Crossref]

P. O. Braatz, Hughes Research Laboratories, U.S. patent application pending.

Cathey, W. T.

W. T. Cathey, Optical Information Processing and Holography (Wiley Interscience, New York, 1974), pp. 244ff.

deGenes, P. G.

For example, see P. G. deGenes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).

Dimmock, J. O.

For example, see the products of FJW Industries, Mount Prospect, Illinois; also, R. J. Phelan, J. O. Dimmock, Appl. Phys. Lett. 11, 359 (1967).
[Crossref]

Efron, U.

S. T. Wu, U. Efron, J. Grinberg, L. D. Hess, M. S. Welkowsky, Proc. Soc. Photo-Opt. Instrum. Eng. 572, 94 (1986).

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, R. N. Schwartz, J. Appl. Phys. 57, 1356 (1985).
[Crossref]

S. T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
[Crossref]

S. T. Wu, U. Efron, L. D. Hess, Appl. Opt. 23, 3911 (1984).
[Crossref] [PubMed]

Fraas, L.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Bosewell, G. Myer, Opt. Eng. 14, 217 (1975).

Grinberg, J.

S. T. Wu, U. Efron, J. Grinberg, L. D. Hess, M. S. Welkowsky, Proc. Soc. Photo-Opt. Instrum. Eng. 572, 94 (1986).

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, R. N. Schwartz, J. Appl. Phys. 57, 1356 (1985).
[Crossref]

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Bosewell, G. Myer, Opt. Eng. 14, 217 (1975).

Hellwarth, R. W.

G. Martin, R. W. Hellwarth, Appl. Phys. Lett. 34, 371 (1979).
[Crossref]

Hess, L. D.

S. T. Wu, U. Efron, J. Grinberg, L. D. Hess, M. S. Welkowsky, Proc. Soc. Photo-Opt. Instrum. Eng. 572, 94 (1986).

S. T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
[Crossref]

S. T. Wu, U. Efron, L. D. Hess, Appl. Opt. 23, 3911 (1984).
[Crossref] [PubMed]

Jacobson, A.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Bosewell, G. Myer, Opt. Eng. 14, 217 (1975).

Khoo, I. C.

I. C. Khoo, R. Normandin, Appl. Phys. Lett. 47, 350 (1985).
[Crossref]

Kompanets, I. N.

P. D. Berezin, L. M. Blinov, I. N. Kompanets, V. V. Nikitin, Sov. J. Quantum Electron. 3, 78 (1973).
[Crossref]

Little, M. J.

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, R. N. Schwartz, J. Appl. Phys. 57, 1356 (1985).
[Crossref]

Martin, G.

G. Martin, R. W. Hellwarth, Appl. Phys. Lett. 34, 371 (1979).
[Crossref]

Miller, L.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Bosewell, G. Myer, Opt. Eng. 14, 217 (1975).

Myer, G.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Bosewell, G. Myer, Opt. Eng. 14, 217 (1975).

Nikitin, V. V.

P. D. Berezin, L. M. Blinov, I. N. Kompanets, V. V. Nikitin, Sov. J. Quantum Electron. 3, 78 (1973).
[Crossref]

Normandin, R.

I. C. Khoo, R. Normandin, Appl. Phys. Lett. 47, 350 (1985).
[Crossref]

Phelan, R. J.

For example, see the products of FJW Industries, Mount Prospect, Illinois; also, R. J. Phelan, J. O. Dimmock, Appl. Phys. Lett. 11, 359 (1967).
[Crossref]

Reif, P. G.

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, R. N. Schwartz, J. Appl. Phys. 57, 1356 (1985).
[Crossref]

Reintjes, J. F.

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, Orlando, Fla., 1984), Chap. 5 and 6.

Schwartz, R. N.

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, R. N. Schwartz, J. Appl. Phys. 57, 1356 (1985).
[Crossref]

Sze, S. M.

For example, see S. M. Sze, Physics of Semiconductors (Wiley Interscience, New York, 1981), p. 54.

Welkowsky, M. S.

S. T. Wu, U. Efron, J. Grinberg, L. D. Hess, M. S. Welkowsky, Proc. Soc. Photo-Opt. Instrum. Eng. 572, 94 (1986).

Wu, S. T.

S. T. Wu, U. Efron, J. Grinberg, L. D. Hess, M. S. Welkowsky, Proc. Soc. Photo-Opt. Instrum. Eng. 572, 94 (1986).

S. T. Wu, Phys. Rev. A 30, 1270 (1986).
[Crossref]

S. T. Wu, U. Efron, L. D. Hess, Appl. Opt. 23, 3911 (1984).
[Crossref] [PubMed]

S. T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

I. C. Khoo, R. Normandin, Appl. Phys. Lett. 47, 350 (1985).
[Crossref]

For example, see the products of FJW Industries, Mount Prospect, Illinois; also, R. J. Phelan, J. O. Dimmock, Appl. Phys. Lett. 11, 359 (1967).
[Crossref]

G. Martin, R. W. Hellwarth, Appl. Phys. Lett. 34, 371 (1979).
[Crossref]

S. T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
[Crossref]

J. Appl. Phys. (1)

U. Efron, J. Grinberg, P. O. Braatz, M. J. Little, P. G. Reif, R. N. Schwartz, J. Appl. Phys. 57, 1356 (1985).
[Crossref]

Opt. Eng. (1)

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Bosewell, G. Myer, Opt. Eng. 14, 217 (1975).

Phys. Rev. A (1)

S. T. Wu, Phys. Rev. A 30, 1270 (1986).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

S. T. Wu, U. Efron, J. Grinberg, L. D. Hess, M. S. Welkowsky, Proc. Soc. Photo-Opt. Instrum. Eng. 572, 94 (1986).

Sov. J. Quantum Electron. (1)

P. D. Berezin, L. M. Blinov, I. N. Kompanets, V. V. Nikitin, Sov. J. Quantum Electron. 3, 78 (1973).
[Crossref]

Other (5)

W. T. Cathey, Optical Information Processing and Holography (Wiley Interscience, New York, 1974), pp. 244ff.

For example, see S. M. Sze, Physics of Semiconductors (Wiley Interscience, New York, 1981), p. 54.

P. O. Braatz, Hughes Research Laboratories, U.S. patent application pending.

For example, see P. G. deGenes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, Orlando, Fla., 1984), Chap. 5 and 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Structure of the NIRVIC using a Si LCLV. (b) Image obtained at the readout side of the NIRVIC system. Brightness variation shown in the photograph is due to the nonuniformity of the Si wafer and the LC layer used in the LV.

Fig. 2
Fig. 2

Input-light-intensity-dependent output transmission of a 4-μm parallel-aligned E-7 LC layer used in a Si LCLV. The operating conditions of the Si LCLV are VACC = −30 V, VDEP = +20 V; pulse width 40 and 500 μsec for accumulation and depletion pulses, respectively; λ1 = 1.06 μm, λ2 = 0.633 μm; T 24°C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = sin 2 ( δ / 2 ) ,

Metrics