Abstract

It is shown that solitons emerge from initial pulses of arbitrary shape and amplitude whose central frequencies are at the zero-dispersion point. The initial threshold power is substantially reduced from that required for experiments to date. The use of these solitons is thus an attractive alternative to both the linear and the nonlinear communication schemes that have been proposed to date.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
    [CrossRef]
  2. A. Hasegawa, Opt. Lett. 8, 650 (1983).
    [CrossRef] [PubMed]

1983

1973

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Hasegawa, A.

A. Hasegawa, Opt. Lett. 8, 650 (1983).
[CrossRef] [PubMed]

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Tappert, F.

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Appl. Phys. Lett.

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The amplitude and the instantaneous frequency of the soliton with σ = 1 and Ω0 = 4.5.

Fig. 2
Fig. 2

The frequency spectrum at ξ = 2 for A0 = 2. The peak in the anomalous regime corresponds to the soliton, while that in the normal regime corresponds to dispersive waves.

Fig. 3
Fig. 3

The frequency shifts of the solitons and the dispersive waves plotted versus initial amplitudes of hyperbolic-secant profiles.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

i ( ϕ z + γ ϕ + k ϕ t ) 1 6 i k 3 ϕ t 3 + ω 0 n 2 2 c | ϕ | 2 ϕ = 0 ,
s = ( t k z ) / τ , ξ = | k | z / τ 3 , q = | ω 0 n 2 τ 3 2 c k | 1 / 2 ϕ
i q ξ i 1 6 3 q s 3 + | q | 2 q = i Γ q ,
q ( ξ , s ) = q ˜ ( θ ) exp ( i k 0 ξ i Ω 0 θ ) ,
i 1 6 d 3 q ˜ d θ 3 1 2 Ω 0 d 2 q ˜ d θ 2 + i ( 1 2 Ω 0 2 1 u ) d q ˜ d θ ( k 0 1 6 Ω 0 3 ) q ˜ + | q ˜ | 2 q ˜ = 0 .
q ˜ ( θ ) 2 a 0 exp ( σ | θ | ) as | θ | ,
a 0 2 [ 1 5 6 ( σ Ω 0 ) 2 ] σ 2 | Ω 0 | ,
0 > σ Ω 0 > 0.24 .
( 2 t 0 ) Δ λ > 6 ( nm ) ( psec ) ,
P 0 ( 2 t 0 ) 3 n 0 c λ k π n 2 | Ω 0 σ | S ,
P 0 ( 2 t 0 ) 3 0.16 W ( psec ) 3 ,

Metrics