Abstract

When pulse pairs copropagate in a fiber, each pulse chirps the other through cross-phase modulation (XPM). In particular, XPM causes spectral broadening of signal pulses during Raman or parametric optical pulse amplification. We have studied XPM experimentally in the fiber Raman amplification soliton laser. We show that experimentally observed spectra can be explained by a simple model that concentrates on the phase change as a function of pulse walk-off.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Schadt, B. Jaskorzynska, U. Osterberg, J. Opt. Soc. Am. B 3, 1257 (1986);J. I. Gersten, R. R. Alfano, M. Belie, Phys. Rev. A 21, 1222 (1980);A. R. Chraplyvy, J. Stone, Electron Lett. 20, 996 (1984);A. R. Chraplyvy, D. Marcuse, P. S. Henry, J. Lightwave Technol. LT-2, 6 (1984);J. T. Manassah, M. A. Mustafa, R. R. Alfano, P. P. Ho, Phys. Lett. 113A, 242 (1985).
    [CrossRef]
  2. M. N. Islam, L. F. Mollenauer, R. H. Stolen, in Ultrafast Phenomena V, G. R. Fleming, A. E. Siegman, eds. (Springer-Verlag, Berlin, 1986), p. 46.
  3. J. D. Kafka, T. Baer, Opt. Lett. 12, 181 (1987).
    [CrossRef] [PubMed]
  4. R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 11, 626 (1986).
    [CrossRef] [PubMed]
  5. L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
    [CrossRef]
  6. W. J. Tomlinson, R. H. Stolen, C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
    [CrossRef]
  7. R. H. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
    [CrossRef]

1987 (1)

1986 (3)

1984 (1)

1978 (1)

R. H. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Alfano, R. R.

Baer, T.

Gordon, J. P.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Ho, P. P.

Islam, M. N.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

M. N. Islam, L. F. Mollenauer, R. H. Stolen, in Ultrafast Phenomena V, G. R. Fleming, A. E. Siegman, eds. (Springer-Verlag, Berlin, 1986), p. 46.

Jaskorzynska, B.

Jimbo, T.

Kafka, J. D.

Li, Q. X.

Lin, C.

R. H. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Manassah, J. T.

Mollenauer, L. F.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

M. N. Islam, L. F. Mollenauer, R. H. Stolen, in Ultrafast Phenomena V, G. R. Fleming, A. E. Siegman, eds. (Springer-Verlag, Berlin, 1986), p. 46.

Osterberg, U.

Schadt, D.

Shank, C. V.

Stolen, R. H.

W. J. Tomlinson, R. H. Stolen, C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[CrossRef]

R. H. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

M. N. Islam, L. F. Mollenauer, R. H. Stolen, in Ultrafast Phenomena V, G. R. Fleming, A. E. Siegman, eds. (Springer-Verlag, Berlin, 1986), p. 46.

Tomlinson, W. J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Phase shifts and spectra corresponding to various degrees of walk-off between pump and signal pulses. (a) Perfect tracking case (t0 = β = 0, 2A2l = 3.5π, α = 1); (b) pump and signal coincide initially, and then pump walks off (t0 = 0, βl = 4, 2A2/β = 3.5π, α = 1); and (c) pump walks from trailing edge of signal to the leading edge (t0 = −2, βl = 4, 2A2/β = 3.5π, α = 1).

Fig. 2
Fig. 2

Modified FRASL (see text). B.S.'s, beam splitters.

Fig. 3
Fig. 3

Experimental spectra for various fiber lengths (l) with and without the tunable étalon in the FRASL cavity. (a) l = 50 m with étalon in cavity; (b) l = 100 m, no étalon; (c) l = 100 m, no étalon, but different FRASL cavity length than in (b); (d) same as (c), except with étalon inserted; (e) l = 400 m, no étalon; and (f) same as (e), except with étalon inserted; here, except for the wings, the spectrum is nearly that of the étalon. The vertical scales are in arbitrary units, and the signal strength increases for increasing fiber lengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ( t ) = 2 A 2 0 l sech 2 ( t t 0 β z ) d z = 2 A 2 β [ tanh ( t t 0 ) tanh ( t t 0 β l ) ] if ( β 0 ) .
F ( δ w ) = 1 2 π u s ( t ) exp [ i Δ ϕ ( t ) ] exp ( i δ ω t ) d t .

Metrics