Abstract

Linear filtering techniques in coherent communications systems appear to offer a useful method for increasing the bandwidth in dispersion-limited fiber-optical signal propagation. These techniques are described, and the requirements on filter performance are outlined. Bandwidth is shown to be related to the square root of the filter figure of merit.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamoto, T. Kimura, IEEE J. Quantum Electron. QE-17, 919 (1981).
    [CrossRef]
  2. D. C. Tran, in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), paper TuA-1.
  3. H. Tokiwa, “Future repeaterless optical transmission system using fluoride-glass single mode fibers,” IEEE J. Lightwave Technol. (to be published).
  4. F. P. Kapron, D. B. Keck, Appl. Opt. 10, 1519 (1971).
    [CrossRef] [PubMed]
  5. H. Tokiwa, Y. Mimura, IEEE J. Lightwave Technol. LT-4, 1260 (1986).
    [CrossRef]
  6. T. Koch, R. C. Alferness, IEEE J. Lightwave Technol. LT-3, 800 (1985).
    [CrossRef]
  7. H. Y-F Lam, Analog and Digital Filters: Design and Realization (Prentice-Hall, Englewood Cliffs, N.J., 1979), Chap. 7.
  8. Centro Studie Laboratori Telecomunicazioni, Optical Fiber Communications (McGraw-Hill, New York, 1981), Chap. 2.

1986 (1)

H. Tokiwa, Y. Mimura, IEEE J. Lightwave Technol. LT-4, 1260 (1986).
[CrossRef]

1985 (1)

T. Koch, R. C. Alferness, IEEE J. Lightwave Technol. LT-3, 800 (1985).
[CrossRef]

1981 (1)

Y. Yamamoto, T. Kimura, IEEE J. Quantum Electron. QE-17, 919 (1981).
[CrossRef]

1971 (1)

Alferness, R. C.

T. Koch, R. C. Alferness, IEEE J. Lightwave Technol. LT-3, 800 (1985).
[CrossRef]

Kapron, F. P.

Keck, D. B.

Kimura, T.

Y. Yamamoto, T. Kimura, IEEE J. Quantum Electron. QE-17, 919 (1981).
[CrossRef]

Koch, T.

T. Koch, R. C. Alferness, IEEE J. Lightwave Technol. LT-3, 800 (1985).
[CrossRef]

Lam, H. Y-F

H. Y-F Lam, Analog and Digital Filters: Design and Realization (Prentice-Hall, Englewood Cliffs, N.J., 1979), Chap. 7.

Mimura, Y.

H. Tokiwa, Y. Mimura, IEEE J. Lightwave Technol. LT-4, 1260 (1986).
[CrossRef]

Tokiwa, H.

H. Tokiwa, Y. Mimura, IEEE J. Lightwave Technol. LT-4, 1260 (1986).
[CrossRef]

H. Tokiwa, “Future repeaterless optical transmission system using fluoride-glass single mode fibers,” IEEE J. Lightwave Technol. (to be published).

Tran, D. C.

D. C. Tran, in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), paper TuA-1.

Yamamoto, Y.

Y. Yamamoto, T. Kimura, IEEE J. Quantum Electron. QE-17, 919 (1981).
[CrossRef]

Appl. Opt. (1)

IEEE J. Lightwave Technol. (2)

H. Tokiwa, Y. Mimura, IEEE J. Lightwave Technol. LT-4, 1260 (1986).
[CrossRef]

T. Koch, R. C. Alferness, IEEE J. Lightwave Technol. LT-3, 800 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Yamamoto, T. Kimura, IEEE J. Quantum Electron. QE-17, 919 (1981).
[CrossRef]

Other (4)

D. C. Tran, in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1986), paper TuA-1.

H. Tokiwa, “Future repeaterless optical transmission system using fluoride-glass single mode fibers,” IEEE J. Lightwave Technol. (to be published).

H. Y-F Lam, Analog and Digital Filters: Design and Realization (Prentice-Hall, Englewood Cliffs, N.J., 1979), Chap. 7.

Centro Studie Laboratori Telecomunicazioni, Optical Fiber Communications (McGraw-Hill, New York, 1981), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Figure of merit M versus scaled bandwidth. The second derivative is evaluated at its maximum, which occurs at ω = ωc. Insert: coherent fiber communication system.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E z = 0 ( t ) = Re z = 0 ( t ) exp ( i ω 0 t ) ,
E z = L ( t ) = Re [ z = L ( t ) exp ( i ω 0 t ) ] ,
z = L ( t ) = d t h ( t t ) z = 0 ( t )
h ( ζ ) = d ω e i ω ζ H ( ω ) ,
H ( ω ) = exp ( i ω 2 β ¨ L / 2 ) .
ϕ ( ω ) = ϕ ( ω 0 ) + ϕ ˙ ( ω ω 0 ) + ½ ϕ ¨ ( ω ω 0 ) 2 ,
S ( t ) = Re z = L ( t ) exp ( i ω c t ) ,
ϕ f ( ω ) = ϕ f ( ω c ) + ϕ ˙ f ( ω ω c ) + ½ ϕ ¨ f ( ω ω c ) 2 ,
S ( t ) = Re f exp ( i ω c t ) ,
τ = T { 1 + [ 4 ln ( 2 ) T 2 ( L β ¨ + ϕ ¨ f ) ] 2 } 1 / 2 .
τ = τ opt = 2 T min = [ 8 ln ( 2 ) | L β ¨ + M / ( Δ ω ) 2 | ] 1 / 2 .
Δ ω = 4 ln ( 2 ) / T min = 4 2 ln ( 2 ) / τ opt .
τ opt 2 = 1 + M 8 ln ( 2 ) L | β ¨ | , M = M / [ 4 ln ( 2 ) ] .
B 2 L | β ¨ | = ( 1.4 ) 2 ( 1 + M ) 8 ln ( 2 ) .

Metrics